
AMSAA RELIABILITY GROWTH HANDBOOK 
 
1. INTRODUCTION 
 
1.1 Foreword.  This handbook provides methodology and concepts to assist in 
reliability growth planning and a structured approach for reliability growth assessments.  
The planning aspects, which are covered in section 2 of this handbook, address the 
planned growth curve and related milestones.  The assessment techniques, which are 
designed to realistically evaluate reliability in the presence of a changing configuration, 
are based on demonstrated and projected values and are covered in sections 3 and 4, 
respectively.  The material in this handbook updates MIL-HDBK-189 [1]. 
 

1.1.1  Why.  Reliability growth management procedures were developed to help 
guide the materiel acquisition process for new military systems.  This process is usually 
complex and difficult for many reasons.  Generally, these systems require new 
technologies and represent a challenge to the state of the art.  Moreover, the requirements 
for reliability, maintainability and other performance parameters are usually highly 
demanding.  Consequently, striving to meet these requirements represents a significant 
portion of the entire acquisition process and, as a result, the setting of priorities and the 
allocation and reallocation of resources such as funds, manpower and time are often 
formidable management tasks. 
 

1.1.2  What.  Reliability growth management procedures address the priorities 
and allocation problem.  These techniques will enable the manager to plan, evaluate and 
control the reliability of a system during its development stage.  The reliability growth 
concepts and methodologies presented in this handbook have evolved over the last couple 
of decades by actual applications to Army, Navy and Air Force systems.  Through these 
applications reliability growth management technology has been developed to the point 
where considerable payoffs resulting from the effective management of attaining system 
reliability can now be achieved. 
 

1.1.3  Layout.  This handbook is written for both the manager and the analyst.  
Generally, the further into the handbook one reads, the more technical and detailed the 
material becomes.  The fundamental concepts are covered early in the handbook and the 
details regarding the implementation of these concepts are discussed primarily in the 
latter sections.  This format, together with an objective for as much completeness as 
possible within each section, have resulted in some concepts being repeated or discussed 
in more than one place in the handbook.  This should help facilitate the use of this 
handbook for studying certain topics without extensively referring to previous material. 
 
1.2 Scope. 
 

1.2.1  Purpose.  This handbook provides an understanding of the concepts and 
principles of reliability growth, advantages of managing reliability growth, and guidelines 
and procedures to be used in managing reliability growth.  It should be noted that this 
handbook is not intended to serve as a reliability growth plan to be applied to a program 
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without any tailoring.  This handbook, when used in conjunction with knowledge of the 
system and its development program, will allow the development of a reliability growth 
management plan that will aid in developing a final system that meets its requirements 
and lowers the life cycle cost of the fielded systems. 
 

1.2.2  Application.  This handbook is intended for use on systems/equipment 
during their development phase by both producer and customer personnel. 
 
1.3 Definition of Terms. 
 

1.3.1  Reliability.  Reliability is the probability that an item will perform its 
intended function for a specified interval under stated conditions.  The term “specified 
interval” refers to the length of the mission as described in a mission profile.  The term 
“stated conditions” refers to the complete definition of the scenario in which the system 
will operate.  These conditions should reflect operational usage. 
 

1.3.2  Reliability Growth.  Reliability growth is the improvement in a reliability 
parameter over a period of time due to changes in product design or the manufacturing 
process. 
 

1.3.3  Reliability Growth Management.  Reliability growth management is the 
systematic planning for reliability achievement as a function of time and other resources, 
and controlling the ongoing rate of achievement by reallocation of resources based on 
comparisons between planned and assessed reliability values. 
 

1.3.4  Repair.  A repair is the replacement of a failed item with an “identical” 
item in order to return the item to its mission. 
 

1.3.5  Fix.  A fix is a corrective action that results in a change to the design or to 
the manufacturing process of the item for the purpose of improving its reliability. 
 
1.4 Overview. 
 

1.4.1  Benefits of Reliability Growth Management.  The following benefits can 
be realized by the utilization of reliability growth management. 
 

1.4.1.1  Finding Unforeseen Deficiencies.  The initial prototypes for a complex 
system with major technological advances will invariably have significant reliability and 
performance deficiencies that could not be foreseen in the early design stage.  This is also 
true of prototypes that are “simply” the integration of existing systems.  Unforeseen 
problems are the norm in achieving seamless interoperation and interfacing between 
already developed systems.  Reliability growth testing will surface these deficiencies. 
 

1.4.1.2  Designing in Improvement through Surfaced Problems.  Even if some 
potential problems can be foreseen, their significance might not.  Prototypes are subjected 
to a development-testing program to surface those problems that drive the failure rate so 
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that the necessary improvements in system design can be made.  The ensuing system 
reliability and performance characteristics will depend on the number and effectiveness 
of these fixes.  The ultimate goal of the development test program is to meet the system 
reliability and performance requirements. 
 

1.4.1.3  Reducing the Risk of Final Demonstration.  Experience has shown that 
programs that rely simply on a final demonstration by itself to determine compliance with 
the reliability requirements do not, in many cases, achieve the reliability objectives within 
the allocated resources.  Emphasis on reliability performance prior to the final 
demonstration using quantitative reliability growth could substantially increase the 
chance of passing, or even replace a final demonstration. 
 

1.4.1.4  Increasing the Probability of Meeting Objectives.  This can be 
achieved by setting interim reliability goals to be met during the development testing 
program and the necessary allocation and reallocation of resources to attain these goals.  
A comprehensive approach to reliability growth management throughout the 
development program organizes this process. 
 

1.4.2  Sketch of Reliability Growth Management.  The essence of reliability 
growth management consists of planning, evaluating and controlling the growth process. 
 

1.4.2.1  Reliability Growth Planning.  Reliability growth planning addresses 
program schedules, amount of testing, resources available and the realism of the test 
program in achieving the requirements.  The planning is quantified and reflected in the 
construction of a reliability growth program plan curve.  This curve establishes interim 
reliability goals throughout the program. 
  

1.4.2.2  Reliability Growth Assessment.  To achieve these goals it is important 
that the program manager be aware of reliability problems during the conduct of the 
program so that he can effect whatever changes are necessary, e.g., increased reliability 
emphasis.  It is, therefore, essential that periodic assessments of reliability be made 
during the test program (usually at the end of a test phase) and compared to the planned 
reliability growth values. 
 

1.4.2.3  Controlling Reliability Growth.  These assessments provide visibility of 
achievements and focus on deficiencies while there is still time to affect the system 
design.  By making appropriate decisions with regard to the timely incorporation of 
effective fixes into the system commensurate with attaining the milestones and 
requirements, management can control the growth process. 
 

1.4.3  Management's Role.  The various techniques associated with reliability 
growth management do not, in themselves, manage.  They simply make reliability a more 
visible and manageable characteristic.  Every level of management can take advantage of 
this visibility by requesting reliability growth plans and progress handbooks for review.  
Without this implementation, reliability growth cannot truly be managed. 
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The planned growth curve and milestones are only targets.  They do not imply 
that reliability will automatically grow to these values.  On the contrary, these values will 
be attained only with the incorporation of an adequate number of effective design fixes 
into the system.  This requires dedicated management attention to reliability growth.  The 
methods in this handbook are for the purpose of assisting management in making timely 
and appropriate decisions to ensure sufficient support of the reliability engineering design 
effort throughout the development testing program. 
 
High level management of reliability growth is necessary in order to have available all 
the options for difficult program decisions.  For example, high level decisions in the 
following areas may be necessary in order to ensure that reliability goals are achieved: 
 

• Revise the program schedule. 
 

• Increase testing. 
 

• Fund additional development efforts. 
 

• Add or reallocate program resources. 
 

• Stop the program until interim reliability goals have been demonstrated. 
 

Although some of these options may result in severe program delay or significant 
increase in development costs, they may have to be exercised in order to field equipment 
that meets user needs and has acceptable total life cycle costs. 
 

1.4.4  Basic Reliability Activities.  Reliability growth management is part of the 
system engineering process.  It does not take the place of the other basic reliability 
program activities such as: 
 

• Design predictions 
 

• Apportionment 
 

• Failure modes and effects analysis 
 

• Stress analysis 
 

Instead, reliability growth management provides a means of viewing all the 
reliability program activities in an integrated manner. 
 

1.4.5  Reliability Growth Process. 
 

1.4.5.1  Basic Process.  Reliability growth is the result of an iterative design 
process.  As the design matures, it is investigated to identify actual or potential sources of 
failures.  Further design effort is then spent on these problem areas.  The design effort can 
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be applied to either product design or manufacturing process design.  The iterative 
process can be visualized as a simple feedback loop as in Figure 1.  This illustrates that 
there are three essential elements involved in achieving reliability growth: 
 

• Detection of failure sources, 
 

• Feedback of problems identified and 
 

• Redesign effort based on problems identified. 
 
 
 
 
 

 
 

Figure 1.  Reliability Growth Feedback Model. 
 
Furthermore, if failure sources are detected by testing, a fourth element is necessary: 
 

• Fabrication of hardware. 
 
And, following redesign, detection of failure sources serves as: 
 
• Verification of redesign effort. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Reliability Growth Feedback Model with Hardware. 
 
  1.4.5.2  Growth Rate.  The rate at which reliability grows is dependent on: 
 

• how rapidly activities in this loop can be accomplished, 
 

• how significant the identified problems are, and 
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• how well the redesign effort solves the identified problems without 
introducing new problems. 

 
Any of these activities may act as a bottleneck.  The cause and degree of the 

bottleneck may vary from one development program to the next, and even within a single 
program may vary from one stage of development to the next. 
 

1.4.6  Reliability Growth Management Control Processes.  Figures 1, 2, 3, and 
5 illustrate the growth process and associated management processes in a skeleton form.  
This type of illustration is used so that the universal features of these processes may be 
addressed.  The representation of an actual program or program phase may be 
considerably more detailed.  This detailing may include specific inputs to, and outputs 
from, the growth process, additional activity blocks, and more explicit decision logic 
blocks. 
 

1.4.6.1  Basic Methods.  There are two basic ways that the manager evaluates the 
reliability growth process.  The first method is to utilize assessments (quantitative 
evaluations of the current reliability status) that are based on information from the 
detection of failure sources.  The second method is to monitor the various activities in the 
process to assure himself that the activities are being accomplished in a timely manner 
and that the level of effort and quality of work are in compliance with the program plan.  
Each of these methods complements the other in controlling the growth process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Reliability Growth Management Model (Assessment). 
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1.4.6.2  Comparison of Methods.  The assessment approach is results oriented; 
however, the monitoring approach, which is activities oriented, is used to supplement the 
assessments and may have to be relied on entirely early in a program.  This is often 
necessary because of the lack of sufficient objective information in the early program 
stages. 
 

1.4.6.3  Assessment.  Figure 3 illustrates how assessments may be used in 
controlling the growth process.  Reliability growth management differs from 
conventional reliability program management in two major ways.  First, there is a more 
objectively developed growth standard against which assessments are compared.  Second, 
the assessment methods used can provide more accurate evaluations of the reliability of 
the present equipment configuration.  A comparison between the assessment and the 
planned value will suggest whether the program is progressing as planned, better than 
planned, or not as well as planned.  If the progress is falling short, new strategies should 
be developed.  These strategies may involve the reassignment of resources to work on 
identified problem areas or may result in adjustment of the timeframe or a re-examination 
of the validity of the requirement.  Figure 4 illustrates an example of both the planned 
reliability growth and assessments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Example of Planned Growth and Assessments. 
 

1.4.6.4  Monitoring.  Figure 5 illustrates control of the growth process by 
monitoring the growth activities.  Since there is no simple way to evaluate the 
performance of the activities involved, management based on monitoring is less 
definitive than management based on assessments.  Nevertheless, this activity is a 
valuable complement to reliability assessments for a comprehensive approach to 
reliability growth management.  But standards for level of effort and quality of work 
accomplishment must, of necessity, rely heavily on the technical judgment of the 
evaluator.  Monitoring is intended to assure that the activities have been performed within 
schedule and meet appropriate standards of engineering practice.  It is not intended to 
second-guess the designer, e.g., redo his stress calculations.  One of the better examples 
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of a monitoring activity is the design review.  The design review is a planned monitoring 
of a product design to assure that it will meet the performance requirements during 
operational use.  Such reviews of the design effort serve to determine the progress being 
made in achieving the design objectives.  Perhaps the most significant aspect of the 
design review is its emphasis on technical judgment, in addition to quantitative 
assessments of progress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Reliability Growth Management Model (Monitoring). 

 
1.4.7  Factors Influencing Growth Curve Shape.  This section introduces 

factors that affect the shape of the growth curve.  Such things as the current stage of the 
development program, the current test phase, the system configuration under test, the 
timing of design change insertion, and the units of measure for test duration all influence 
the growth curve’s shape. 
 

1.4.7.1  Stages of the Development Program.  Generally, any system 
development program is divided into stages having different objectives for each stage.  
The names and objectives for each stage in a given development program need not be the 
ones given here.  These stages are given as representative of a typical development: 
 

• Proposal.  There is no hardware at this stage.  This is the engineering and 
accounting paper analysis of differing proposed solutions and designs.  In this 
stage the concern is over what are the requirements, can they be met, and if so, 
how and at what estimated cost? 

 
• Conceptual.  Experimental prototypes are built at this stage.  These may bear 

little resemblance to the actual system.  They are for proof-of-principle. 
 

• Validation.  Prototypes much like the final system are built and tested.  This 
stage tries to achieve the performance and reliability objectives for the system. 
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• Full Scale Development.  Systems built as though they were in production are 
tested to work out final design details and manufacturing procedures. 

 
Quantitative reliability growth management can be used during the validation and 

full-scale development stages of the program.  It could be argued that the different nature 
of the testing going on in these stages is different enough to cause different rates of 
growth to occur.  How much different the types of testing are determines how they will 
be treated in creating the planning growth curve.  We will discuss this further in Section 
1.4.7.6. 
 

1.4.7.2  Test Phases.  Within a development stage it is quite likely that testing 
will be broken up into alternating time periods of active testing followed by none.  Each 
period of active testing can be viewed as a testing phase.  Also, within a development 
stage it is quite likely that more than one type of testing will be going on (e.g., 
performance testing).  If these other tests that are not specifically for reliability follow the 
intended operating environment and the intended use stresses well enough, and if design 
changes are made on the basis of these tests, then the information gathered may be 
incorporated into the reliability growth test data base.  These would also be called 
reliability growth testing phases.  It is to be expected that the reliability will grow from 
one phase to the next.  The reliability growth planning curve should reflect this. 
 

1.4.7.3  System Configurations.  In an absolute sense, any change to the design 
of a system constitutes a new configuration.  For our purposes, we will term a specific 
design a new configuration if there has been one significant design change, or enough 
little design changes, that cause an obviously different failure rate for the system.  It is 
possible that two or more testing phases could be grouped together for analysis based on 
the configuration tested in these phases being substantially unchanged.  It is also possible 
that one design change is so effective at increasing reliability that a new configuration 
could occur within a test phase.  System configuration decisions can also be made on the 
basis of engineering judgement.  Obviously, the configuration under test has great 
influence on the growth curve. 
 

1.4.7.4  Timing of Fixes.  The replacement of a part with another part identical to 
the first is termed a repair.  Replacing, or eliminating, a part due to a design change is 
termed a fix.  Fixes are intended to reduce the rate at which the system fails.  Repairs 
make no change in the failure rate of the system.  The time of insertion of a fix affects the 
pattern of reliability growth. 
 

1.4.7.4.1  Test-Fix-Test.  In an absolutely pure test-fix-test program, when a 
failure is observed, testing stops until a design change is implemented on the system 
under test.  When the testing resumes, it is with a system that has incrementally better 
reliability.  The graph of reliability for this testing strategy is a series of small increasing 
steps, with each step stretching out longer to represent a longer time between failures.  
Such a graph can be approximated by a smooth curve.  See Figure 6. 
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Figure 6.  Graph of Reliability in a Test-Fix-Test Program. 
 

Such a pure test-fix-test program is impractical in most situations.  Testing is 
likely to continue with a repair, and the fix will be implemented later.  Nevertheless, if 
fixes are inserted as soon as possible and while testing is still proceeding, the stair step 
like reliability increases and the shape of the approximating curve and will be similar, but 
rise at a slower rate.  This is due to the reliability remaining at the same level that it was 
at when the failure happened until the fix is inserted.  Thus the steps will all be of longer 
length, but the same height.  Continuing to test after the fix is inserted will serve to verify 
the goodness of the design change. 
 

1.4.7.4.2  Test-Find-Test.  During a test-find-test program the system is also 
tested to determine problem failure modes.  However, unlike the test-fix-test program, 
fixes are not incorporated into the system during the test.  Rather, the fixes are all inserted 
into the system at the end of the test phase and before the next testing period.  Since a 
large number of fixes will generally be incorporated into the system at the same time, 
there is usually a significant jump in system reliability at the end of the test phase.  The 
fixes incorporated into the system between test phases are called delayed fixes.  See 
Figure 7. 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Graph of Reliability in a Test-Find-Test Program. 
 

1.4.7.4.3  Test-Fix-Test with Delayed Fixes.  The test program commonly used 
in development testing employs a combination of the two types of fix insertions 
discussed above.  In this case, some fixes are incorporated into the system during the test 
while other fixes are delayed until the end of the test phase.  Consequently, the system 
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reliability will generally be seen as a smooth process during the test phase and then jump 
due to the insertion of the delayed fixes.  See Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Graph of Reliability in a Test-Fix-Test Program with Delayed Fixes. 
 

1.4.7.5  Combined Influences of Factors on Reliability Growth Curve Shape.  
In order to reach the goal reliability, the development-testing program will usually consist 
of several major test phases.  Within each test phase the fix insertion may be carried out 
in any one of the three ways discussed above.  As an example, suppose that testing were 
conducted during the validation and full-scale development stages of the program.  Each 
stage would have at least one major test phase, implying a minimum of two major test 
phases for the program.  In this case, there would be 32 = 9 general ways the reliability 
may grow during the development test.  See Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 

 
Figure 9.  The Nine Possible General Growth Patterns for Two Test Phases. 
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Row 1 shows Phase 1 as having all fixes delayed until the end of the testing phase.  Row 
2 shows Phase 1 as having some fixes inserted during test and some delayed.  Row 3 
shows Phase 1 as having all fixes inserted during test, with none delayed.  Column 1 
shows Phase 2 as having all fixes delayed until the end of the testing phase.  Column 2 
shows Phase 2 as having some fixes inserted during test and some delayed.  Column 3 
shows Phase 2 as having all fixes inserted during test, with none delayed. 
 

Figures 9.1 and 9.9 represent the two extremes in possible growth test patterns.  
There are some distinct statistical advantages to following a complete test-fix-test 
program: 
 

• The estimated value of reliability at any point along the smooth growth curve 
is an instantaneous value.  That is, it is not dragged down by averaging with 
the failures that accrued due to earlier (and hopefully) less reliable 
configurations. 

 
• Confidence limits about the true value of reliability can be established. 

 
• While the impact of the jumps in reliability can be assessed using a mix of 

some engineering judgement (this will be discussed in the section on 
Reliability Growth Projection) and direct calculation, the estimate of 
reliability in a test-fix-test program is based solely on data. 

 
• In a test-fix-test program, the goodness of the design changes is continuously 

being assessed in the estimate of reliability. 
 

A development stage may consist of more than one distinct test phase.  For 
example, suppose that testing is stopped part way through the full-scale development 
stage, and delayed fixes are incorporated into the system.  The testing in this case may be 
considered as two major test phases during this stage, giving three phases for the whole 
program.  If a program had three major test phases then there would be 33 = 27 patterns 
of reliability growth.  Obviously this manner of determining the possible number of 
growth patterns can be extended to any number of phases. 
 

1.4.7.6  Growth Curve Reinitialization.  The differences in the growth curves 
between phases shown in Figures 9.5 and 9.6 represent the difference mentioned in the 
last paragraph of Section 1.4.7.1.  Underlying Figure 9.6 is the assumption that the testing 
environment and engineering efforts are the same across test phases, thus the 
continuation of the same growth curve into the succeeding phase, after the jump for 
delayed fixes.  In Figure 9.5 some factor influencing the rate of growth has substantially 
changed between the phases, which is reflected in a new growth curve for the succeeding 
phase.  This is called reinitializing the growth curve.  It must be emphasized that 
reinitialization of a growth curve is only justified if the testing environment is so different 
as to introduce a new set of failure modes, or the engineering effort is so different as to be 
best represented as a totally new program. 
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1.4.7.7  Shape Changes Due to Calendar Time.  Reliability growth is often 

depicted as a function of test time for evaluation purposes.  For management and 
presentation purposes it may be desirable to portray reliability growth as a function of 
calendar time.  This can be accomplished by determining the number of units of test 
duration that will have been completed at each measure point in calendar time and then 
plotting the value that corresponds to the completed test duration above that calendar 
point.  This is a direct function of the program schedule.  Figure 10 shows the reliability 
growth of a system as a function of test time and calendar time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Comparison of Growth Curves Based on Test Duration Vs Calendar 
Time. 
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• Subsystem Level:  The obvious meaning is the testing of a major and 
reasonably complex component of the whole system (e.g., an engine for a 
vehicle).  Sometimes, the subsystem would seem to be an autonomous 
unit, but because the requirement is for this unit to operate in conjunction 
with other units to achieve an overall functional goal it is really only part 
of “the system” (e.g., radar for an air defense system). 

 
The appropriate level of consideration can be different at different times within 

the development. 
 

1.4.8.2  Analysis of Previous Programs.  Analysis of previous similar programs 
is used to develop guidelines for predicting the growth during future programs.  Such 
analysis may be performed on either overall programs or individual program phases, or 
both.  Of particular interest are the patterns of growth observed and the effect of program 
characteristics on initial values and growth rates.  The U.S. Army Materiel Systems 
Analysis Activity (AMSAA) has conducted a data study, [2], that is a useful guide in 
choosing appropriate growth rates for various system types. 
 

1.4.9 Planning. 
 

1.4.9.1  Planned Growth Curve.  The planned growth curve is a picture of the 
anticipated reliability growth for the entire program.  It is an essential part of the 
reliability growth management methodology and is important to any reliability program.  
This curve is constructed early in the development program generally before hard 
reliability data are obtained and is typically a joint effort between the program manager 
and contractor.  Its primary purpose is to provide management with guidelines as to what 
reliability can be expected at any stage of the program and to provide a basis for 
evaluating the actual progress of the reliability program based upon generated reliability 
data.  The planned growth curve can be constructed on a phase-by-phase basis.  See 
Figure 11. 
 
Analysis of Previous Similar Programs 
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Determination of pattern and phase characteristics that influence growth curves. 
 

Figure 11.  Development of Planned Growth Curve on a Phase by Phase Basis. 
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1.4.9.2  Idealized Growth Curve.  An Idealized Growth Curve is a planned 

growth curve that consists of a single smooth curve based on initial conditions, an 
assumed growth rate, and/or planned management strategy.  This curve is a strict 
mathematical function of the input parameters across the measure of test duration (e.g., 
time, distance, trials), thus the name “Idealized.”  No program can be expected to assume 
this exact mathematical ideal shape, but it is useful in setting interim goals.  See Figure 
12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Global Analysis Determination of Planned Growth Curve. 
 

1.4.10  Tracking. 
 

1.4.10.1  Demonstrated Reliability.  A demonstrated reliability value is based on 
actual test data and is an estimate of the current attained reliability.  The assessment is 
made on the system configuration currently undergoing test, not on an anticipated 
configuration, nor a prior configuration.  This number allows for the effects of even 
recently introduced fixes into the system as its calculation incorporates the trend of 
growth established over the history, to date, of the development program. 
 

1.4.10.2  Reliability Growth Tracking Curve.  The reliability growth tracking 
curve is the curve that best fits the data being analyzed.  It can be based on data solely 
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within one phase or data from several phases.  Whatever period of testing is used to form 
a database, this curve is the statistical best representation from a family of growth curves 
of the overall reliability growth of the system.  It depicts the trend of growth that has been 
established over the database.  Thus, if the database covers the entire program to date, the 
right end point of this curve is the current demonstrated reliability.  See Figure 13. 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Reliability Growth Tracking Curve. 
 

1.4.11  Projection. 
 

1.4.11.1  Extrapolated Reliability.  Extrapolating a growth curve beyond the 
currently available data shows what reliability a program can be expected to achieve, as a 
function of additional test duration, provided the conditions of test and the engineering 
effort to improve reliability are maintained at their present levels (i.e., the established 
trend continues). 
 

1.4.11.2  Projected Reliability.  A reliability projection is an assessment of 
reliability that can be anticipated at some future point in the development program.  The 
projection is based on the achievement to date and engineering assessments of future 
program characteristics.  Projection is a particularly valuable analysis tool when a 
program is experiencing difficulties because it enables investigation of program 
alternatives. 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Extrapolated and Projected Reliabilities. 
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APPENDIX A 
 
 
Background 

Before going into the specifics of devising reliability growth planning curves, it is useful 
to look at the history of this process to learn why the curves have the form that they do. 
 

The earliest reference that we have found on this subject is An Analytical Model of 
Reliability Growth Through Testing by H. K. Weiss, Handbook No. 54 304, 17p, AD-035 767, 
May 1954, Northrop Aircraft Inc., Hawthrone, California.  Also, a useful survey of some early 
reliability growth methods is Reliability Growth Modeling by Larry H. Crow, Technical 
Handbook No. 55, August 1972, U.S. Army Materiel Systems Analysis Agency, Aberdeen 
Proving Ground, Maryland. 
 
The Duane Postulate. 

James T. Duane, an engineer with General Electric’s Motor and Generator Department, 
published a paper titled “Learning Curve Approach to Reliability Monitoring” in IEEE 
Transactions on Aerospace, Vol. 2, No. 2, 1964.  This paper recorded his observation that if 
changes to improve reliability (which are now termed fixes) are incorporated into the design of a 
system under development, then on a log-log plot, the graph of cumulative failure rate Vs 
cumulative test time is linear.  This observation has become known as the “Duane Postulate.”  
This empirically derived statement is the key to the most commonly accepted growth model in 
use today (see Section 6.1.4).  A graph given in Duane’s paper is shown in Figure 6.1.  The 
straight lines are based on a least squares fit of the data.  The negative slope of each line is 
defined to be the growth rate, α , for that line. 
 
Duane’s Growth Model. 
 
 
 
 
 
 
 
 
 
 
 

Let N (t) = the total Number of failures by time t.  Then the average failure rate, also 
called Cumulative failure rate C(t), can be found by dividing N(t) by t. 
 

t
tN

tC
)(

)( =  

 
Let δ  be the y-intercept on a log-log plot of the straight line that Duane postulated.  The 

slope-intercept formula for this line then becomes: 

 
        On a Log-Log Plot, the graph of 
 
  Cumulative Failure Rate 
     Vs 
  Cumulative Test Time 
 
           is Linear 
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tLogtCLog αδ −=)(  

 
where log denotes the natural (base e) logarithm (although any base could be used). 
 
 
 
 
 
 
 
 
Taking anti-logs  
 

αλ −= ttC )(  
 
where 

λδ ln=  
 
Multiplying C(t) by t gives N(t), and multiplying α−t  by t adds 1 to the exponent, α−1t . 
 
So 

αλ −= 1)( ttN  
 
Taking the first derivative of the number of failures with respect to time gives the instantaneous 
failure rate, r(t), at time t. 
 

( ) ααλ −−== t
td
tNd

tr 1
)(

)(  

 
Duane’s model thus has two parameters, α  and λ.  The first, α , determines the shape of 

the growth curve.  The second, λ, is the size parameter for the curve.  With these two 
parameters, the cumulative number of failures N(t), the average failure rate C(t), and the 
instantaneous failure rate r(t) can be calculated for any time t within the test.  Further, given α  
and λ , it is possible to solve for t, the amount of testing time it will take to achieve a specific 
reliability.  This assumes that the factors affecting reliability growth remain unchanged across 
the development. 
 
Drawbacks to Duane’s Method. 

Duane stated that α  could be universally treated as being .5, as that seemed to be the 
modal value within his database.  This has since been shown to be unrealistic.  It does not allow 
for different test environments causing failures to be surfaced at different rates, and for different 
levels of engineering effort causing different rates of fix insertion. 
 

 
    The Duane Postulate: 
 
  Log C ( t ) = δ - α Log t 
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The reliability values calculated using his method are treated as being deterministic.  That 
is, there is no allowance for the variation that is typically observed about an estimated value, and 
there is no way of judging whether the observed value, which rarely matches the estimated value, 
is close enough.  Further, there is no way to check whether the model is valid for the current test 
situation. 
 

All Duane growth curves pass through the origin of the graph.  That is, the item under 
test is imputed to have zero reliability at the start of test. 
 
The Crow/AMSAA Growth Model. 

Larry H. Crow while at the U.S. Army Materiel Systems Analysis Activity’s Reliability 
and Maintainability Division published Reliability Analysis for Complex, Repairable Systems, 
Technical Handbook No. 138, December 1975, U.S. AMSAA, Aberdeen Proving Ground, 
Maryland.  In this handbook, Dr. Crow explored the advantages of using a Nonhomogeneous 
Poisson Process with a Weibull intensity function to model several phenomena, including 
reliability growth.  If system failure times follow the Duane Postulate, then they can be modeled 
as a Nonhomogeneous Poisson Process with Weibull intensity function.  To make the transition 
from Duane’s formulae to the Weibull intensity functional forms, β  has to be substituted for 

α−1 .  Thus the parameters in the Crow model are λ  and β, where β  determines the shape of 
the curve.  The physical interpretation of β  (called the growth parameter) is the ratio of the 
current (instantaneous) MTBF to average (cumulative) MTBF at time t. 
 

This stochastic interpretation immediately brings the benefits of Statistics to the formulae 
that Duane had derived.  That is, the parameters λ and β can be determined using maximum 
likelihood estimators (mle’s) rather than β being assumed to be fixed.  Further, hypothesis tests 
and confidence limits can be determined for the parameters, and Goodness-of-Fit tests can be 
performed on the model.  This eliminates the first two drawbacks of Duane’s model.  We will 
discuss later how Crow handles the problem of imputed zero reliability at the start of test.  
 
One should take note that even though the growth rate estimate $α  can be calculated from 
Crow’s growth parameter estimate, $β , and it is still interpreted as the estimate of the negative 
slope of a straight line on a Log-Log plot, Crow’s estimates of λ and β are somewhat different 
from the ones derived using Duane’s procedures.  This follows from the fact that the estimation 
procedure is mle, not least squares, thus each model’s parameters correspond to different straight 
lines, respectively. 
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2. RELIABILITY GROWTH PLANNING 
 
2.1 System Level Planning. 
 

2.1.1  Introduction.  The material in Section 2.1 is from Reference [1]. 
 
A well thought out reliability growth plan can serve as a significant management tool in 

scoping out the required resources to enhance system reliability and demonstrate the system 
reliability requirement.  The principal goal of the growth test is to enhance reliability by the 
iterative process of surfacing failure modes, analyzing them, implementing corrective actions 
(fixes), and testing the "improved" configuration to verify fixes and continue the growth process 
by surfacing remaining failure modes.  If the growth test environment during engineering and 
manufacturing development (EMD) reasonably simulates the mission environment stresses then 
it may be feasible to use the growth test data to statistically demonstrate the technical, i.e., 
engineering, requirement (denoted by TR) for system reliability.  Such use of the growth test 
data could eliminate the need to conduct a follow-on reliability demonstration test.  The classical 
demonstration test requires that the system configuration be held constant throughout the test.  
This type of test is principally conducted to assess and demonstrate the reliability of the 
configuration under test. 
 

Associated with the demonstration test are statistical consumer and producer risks.  In our 
context, they are frequently termed the Government and contractor risks, respectively.  In broad 
terms, the Government risk is the probability of accepting a system when the true technical 
reliability is below the TR and the contractor risk is the probability of rejecting a system when 
the true technical reliability is at least the contractor's target value (set above the TR).  An 
extensive amount of test time may be required for the reliability demonstration test to suitably 
limit these statistical risks.  Moreover, this allotted test time would be principally devoted to 
demonstrating the system TR associated with the configuration under test instead of to enhancing 
the system reliability through the reliability growth process of sequential configuration 
improvement.  In today's austere budgetary environment, it is especially important to make 
maximum use of test resources.  With proper planning, a reliability growth program can be an 
efficient procedure for demonstrating the system reliability requirement while reliability 
improvements are being achieved via the growth process. 

 
2.1.2  Background.  During a reliability growth test phase, the system configuration is 

changing due to the activity of surfacing failure modes, analyzing the modes, and implementing 
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fixes to the surfaced modes.  It is often reasonable to portray this reliability growth in an 
idealized manner, i.e., by a smooth rising curve that captures the overall pattern of growth.  The 
curve relates a measure of system reliability, e.g., mean-time-between-failures (MTBF), to test 
duration (e.g., hours).  The functional form used to express this relationship in MIL-HDBK-189 
[2] is given by 
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( ) ( )( ) ( ) αα II ttMtM −= 1    (1) 
 
In this equation, M(t) typically denotes the MTBF achieved after t test hours.  The exponent α  is 
termed the growth rate and represents the slope of the assumed linear relationship between 
ln{M(t)} and ln(t), where In denotes the base e logarithm function.  The parameters It , IM  may 
be thought of as defining the initial conditions.  In particular, IM  may be interpreted as the 
MTBF associated with the initial configuration entering the reliability growth test.  In this 
interpretation, It  would be the planned cumulative test time until one or more fixes are 
incorporated.  An alternate and more general interpretation of IM  and It  would be to regard 

IM  as the anticipated average MTBF over an initial test period It . 
 

In the above discussion, we have referred to M(t) as the MTBF and have measured test 
duration by time units, e.g., t hours.  We will continue to refer to M(t) and test duration t in this 
fashion; however, more generally, M(t) may denote mean-miles-to-failure or mean-rounds-to-
failure (for a large number of rounds).  The corresponding measures of test duration would be 
test mileage or rounds expended, respectively. 
 

As indicated in Section 2.1.1, we shall consider using the data generated during the 
reliability growth test phase to demonstrate the system reliability technical requirement (TR) at a 
specified confidence level γ.  This section addresses the case where the data consists of 
individual failure times 0< 1t < 2t < ... < nt T≤  for n observed mission reliability failures during 
test time T, where Equation (1) is assumed to hold for 0<t T≤ .  Since the MIL-HDBK-189 
growth model governed by Equation (1) is being assumed in this section, we shall also require 
that the observed number of failures by test duration t, denoted by N(t), be a non-homogeneous 
Poisson process with intensity function ( ) ( ){ } 1−= tMtρ . 
 

The growth curve planning parameters α, It , IM , and the test time T should be chosen to 
reasonably limit the consumer (Government) and producer (contractor) statistical risks referred 
to in Section 2.1.1.  Prior to presenting the relationship between these risks and the parameters 
mentioned above, it is instructive to review the determination of these risks for a reliability 
demonstration test based on a constant configuration. 
 

The parameters defining the reliability demonstration test consist of the test duration DEMT , 
and the allowable number of failures c.  Define the random variable obsF  to be the number of 
failures that occur during the test time DEMT .  Denote the observed value of obsF  by obsf .  Then 
the "acceptance" or "passing" criterion is simply cfobs ≤ . 
 

Let M denote the MTBF associated with the constant configuration under test.  Then obsF  
has the Poisson probability distribution given by 
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Thus the probability of acceptance, denoted by Prob(A; M, c, DEMT ), as a function of M, c, and 

DEMT  is given by 
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To ensure "passing the demonstration test" is equivalent to demonstrating the TR at confidence 
level γ (e.g., γ = 0.80 or γ = 0.90), we must choose c such that 
 

( )obsobs fTRcf γl≤⇔≤     
 (4) 

 
where TR>0 and ( )obsfγl  denotes the value of the 100 γ percent lower confidence bound when 

obsf  failures occur in the demonstration test of length DEMT .  Note that ( )obsfγl  is a lower 
confidence bound on the true (but unknown) MTBF of the configuration under test.  It is well 
known (see Proposition 1 in Appendix C) that the following choice of c satisfies (4): 
 
Choose c to be the largest non-negative integer k that satisfies the inequality 
 

  - 1
! i

)TR/T(e
i

0

T- DemTR/Dem γ≤∑
=

k

i

    (5) 

Note c is well-defined provided 
 

γ - 1)TR/T-(exp Dem ≤      (6) 
 
Throughout this section we shall assume (6) holds and that c is defined as above. 
 

Recall that the operating characteristic (OC) curve associated with a reliability 
demonstration test is the graph of the probability of acceptance, i.e., Prob (A;M,c, DEMT ) given in 
Equation (3), as a function of the true but unknown constant MTBF M as depicted on Figure 1. 
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Figure 1.  Example OC Curve for Reliability Demonstration Test. 
 
The Government (or consumer risk) associated with this curve, called the Type II risk, is defined 
by 
 

)T c, TR, A;( ProbIIType Dem∆     (7) 
 
Thus, by the choice of c, 
 

γ - 1IIType ≤       (8) 
 
For the contractor (producer) to have a reasonable chance of demonstrating the TR with 
confidence γ, the system configuration entering the reliability demonstration test must often have 
a MTBF value, say GM  (the contractor's goal MTBF) that is considerably higher than the TR.  
The probability that the producer fails the demonstration test given the system under test has a 
true MTBF value of GM  is termed the producer (contractor) or Type I risk.  Thus 
 

)T c, ,M A;(Prob-1IType DemG=    (9) 
 
If the Type I risk is higher than desired, then either a higher value of GM  should be attained 
prior to entering the reliability demonstration test or DEMT  should be increased.  If DEMT  is 
increased then c may have to be readjusted for the new value of DEMT  to remain the largest non-
negative integer that satisfies inequality (5). 
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The above numbered equations and inequalities express the relationships between the 
reliability demonstration test parameters c, DEMT , the requirement parameters TR, γ, and the 
associated risk parameters (the consumer and producer risks).  These relationships are 
fundamental in conducting tradeoff analyses involving these parameters for planning reliability 
demonstration tests.  In the next section we shall present relationships between the defining 
parameters for a reliability growth curve ( IM , It , α, and T), the requirement parameters (TR 
and γ), and the associated statistical risk parameters (the consumer and producer risks).  Once 
these relationships are in hand, tradeoffs between these parameters may be utilized to consider 
demonstrating the TR at confidence level γ by utilizing reliability growth test data. 
 

2.1.3  Reliability Growth Operating Characteristic (OC) Analysis.  In the previous 
section, it was noted that for a reliability demonstration test, passing the test could be stated in 
terms of the allowable number of failures, c.  It was noted that if c is properly chosen, then 
passing the test is equivalent to demonstrating the TR at confidence level γ, i.e., 
 

)f( TRcf obsobs γl≤⇔≤  
 
In the presence of reliability growth, observing c or fewer failures is not equivalent to 
demonstrating the TR at a given confidence level.  The cumulative times to failure as well as the 
number of failures must be considered when using reliability growth test data to demonstrate the 
TR at a specified confidence level γ.  Thus, the "acceptance" or "passing" criterion must be stated 
directly in terms of the γ lower confidence bound on M(T) calculated from the reliability growth 
data.  These data will be denoted by (n, s) where n is the number of failures occurring in the 
growth test of duration T and s = ( 1t , 2t ,…, nt ) is the vector of cumulative failure times.  In 
particular, it  denotes the cumulative test time to the thi  failure and 0< 1t  < 2t ......< nt T≤  for 

1≥n .  We shall also refer to the random vector (N, S) which takes on values (n, s) for 1≥n .  
Unless otherwise stated, throughout the remainder of this report (N, S) will be conditioned on 

1≥N . 
 

Using the lower confidence bound methodology developed for reliability growth data by 
Crow in [3], we shall define our acceptance criterion by the inequality 
 

 s) (n,  TR γ≤ l       (10) 
 
where ( )sn,γl  is the γ statistical lower confidence bound on M(T), calculated as in [3] for 1≥n .  
Thus, the probability of acceptance is given by 
 

 S))(N,L (TR  Prob  γ≤      (11) 
 
where the random variable ( )SNL ,γ  takes on the value ( )sn,γl  when (N, S) takes on the value 
(n, s). 
 
In accordance with [3], for 1≥n , we define 
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where ( )nzγ  is the unique positive value of z such that 
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In the above, the function 1I  denotes the modified Bessel function of order one defined as 
follows: 
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In Equation (12), ( )TM n

ˆ  denotes the maximum likelihood estimate (mle) for M(T) given 
in MIL-HDBK-189 when n failures are observed.  As discussed in MIL-HDBK-189, 
 

( ) ( )nn nTTM β̂ˆ =      (15) 
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The distribution of (N, S) and hence that of Lγ (N, S) is completely determined by the test 
duration T together with any set of parameters that define a unique reliability growth curve of the 
form given by Equation (1) in Section 2.1.2.  Thus, the value of a probability expression such as 
given in (11) also depends on T and the assumed underlying growth curve parameters.  One such 
set of parameters, as seen directly from Equation (1), is It , IM , α together with T.  In this 
growth curve representation, It  may be arbitrarily chosen subject to 0< It <T.  Alternately, scale 
parameter λ>0 and growth rate α, together with T, can be used to define the growth curve by the 
equation 
 

Tt0,)t(/1)t(M 1- ≤<= ββλ    (17) 
 

where αβ −=1 . 

 
Note by Equation (17), 
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1-T))T(M( /1 ββλ =      (18) 
 
Thus, the growth curve can also be expressed as 
 

Tt0 ,)T/t())T(M()t(M ≤<= α    (19) 
 
By Equation (19) we see that the distribution of (N, S) and hence that of Lγ (N, S) is determined 
by (α, T, M(T)). 
 

Unless otherwise stated, throughout the remainder of this section, the distributions for (N, 
S) and for random variables defined in terms of (N, S) will be with respect to a fixed but 
unspecified set of values for α, T, M(T) subject only to α<1, T>0, and M(T)>0.  The same 
considerations apply to any associated probability expressions.  In particular, the probability of 
acceptance, i.e., Prob (TR≤Lγ(N, S)), is a function of (α, T, M(T)). 
 

To further consider the probability of acceptance, we must first consider several properties 
of the system of lower confidence bounds generated by Lϒ (N, S) as specified via Equations (12) 
through (16).  The statistical properties of this system of bounds directly follow from the 
properties of a set of conditional bounds derived by Crow in [3].  These latter bounds are 
conditioned on a sufficient statistic W that takes on the value 
 

)t/T(n w
n

1i
i∑

=

= l      

 (20) 
 
when (N, S) takes on the value (n, s). 
 

Let Lγ (N, S; w) denote the random variable Lγ (N, S) conditioned on W = w>0.  In [3] 
Crow shows that Lγ (N, S; w) generates a system of γ lower confidence bounds on M(T), i.e., 
 

γγ ≥≤ ))TM()wS;(N,L(Prob    
 (21) 

 
for each set of values (α, T, M(T)) subject to α<1, T>0, and M(T)>0.  Note that the value of w is 
not known prior to conducting the reliability growth test.  Thus, to calculate an OC curve for test 
planning, i.e., a priori, we wish to base our acceptance criterion on Lγ (N, S) as in (11) and not on 
the conditional random variable Lγ (N, S; w).  We can utilize Equation (21) to show (see 
Propositions 2, 3, and 4 in Appendix C) that the Type II or consumer risk for M(T)=TR is at 
most 1-γ (for any α<1 and T>0), analogous to the case in Section 2.1.2, i.e., 
 

γγ -1))SN,(LTR( ProbIIType   ≤≤=   (22) 
 
for any α<1 and T>0, provided M(T) = TR. 
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To emphasize the functional dependence of the probability of acceptance on the underlying 
true growth curve parameters (α, T, M(T)), we shall denote this probability by Prob (A; α, T, 
M(T)).  Thus, 
 

( ) ))SN,(LTR( Prob)TM( T, , A; Prob  γα ≤∆  
 (23) 

 
where the distribution of (N, S) and hence that of Lγ (N, S) is determined by (α,T, M(T)).  It can 
be shown that Prob (A; α, T, M(T)) only depends on the values of M(T)/TR (or equivalently 
M(T) for known TR) and E(N).  The ratio M(T)/TR is analogous to the discrimination ratio for a 
constant configuration reliability demonstration test of the type considered in Section 2.1.2.  
Note E(N) denotes the expected number of failures associated with the growth curve determined 
by (α, T, M(T)).  More explicitly, the following equations can be derived (see Propositions 5 and 
6 in Appendix C): 
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where µ ∆ E(N) and d ∆ M(T)/TR. 
 
Note (25) shows that the probability of acceptance only depends on µ and d.  Thus, we shall 
subsequently denote the probability of acceptance by Prob (A;µ,d). 
 

By (22), 
 

γµ  - 1)1 , A;( ProbIIType ≤=    (26) 
 
Thus, the actual value of the Government or consumer risk solely depends on µ and is at most 
1-γ.  To consider the producer or contractor risk, Type I, let Gα  denote the contractor's target or 
goal growth rate.  This growth rate should be a value the contractor feels he can achieve for the 
growth test.  Let GM  denote the contractor's MTBF goal.  This is the MTBF value the contractor 
plans to achieve at the conclusion of the growth test of duration T.  Thus, if the true growth curve 
has the parameters Gα  and GM , then the corresponding contractor risk of not demonstrating the 
TR at confidence level γ (utilizing the generated reliability growth test data) is given by 
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 )d ,A;( Prob-1IType GGµ=     (27) 

 
where 
 

 }M)-1({/T andTR/Md GGGG αµ == G   (28) 
 
If the Type I risk is higher than desired, there are several ways to consider reducing this risk 
while maintaining the Type II risk at or below 1-γ.  Since Prob (A; Gµ , Gd ) is an increasing 
function of Gµ  and Gd , the Type I risk can be reduced by increasing one or both of these 
quantities, e.g., by increasing T. 
 

To further consider how the Type I statistical risk can be influenced, we shall express Gd  
and Gµ  in terms of TR, T, Gα , and the initial conditions ( IM , It ).  Using Equations (1) and (19) 
with α = Gα  and M(T) = GM , by (28) we can show  
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Note for a given requirement TR, initial conditions ( IM , It ), and an assumed positive growth 
rate Gα , the contractor risk is a decreasing function of T via Equations (27), (29), and (30).  
These equations can be used to solve for a test time T such that the contractor risk is a specified 
value.  The corresponding Government risk will be at most 1-γ  and is given by Equation (26). 
 

Section 2.1.4 contains two examples of an OC analysis for planning a reliability growth 
program.  The first example illustrates the construction of an OC curve for given initial 
conditions ( IM , It ) and requirement TR.  The second example illustrates the iterative solution 
for the amount of test time T necessary to achieve a specified contractor (producer) risk, given 
initial conditions ( IM , It ) and requirement TR.  These examples use Equations (29) and (30) 
rewritten as in Equations (1) and (24), respectively, i.e., 
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The quantities d= M(T)/TR and µ = E(N) are then used to obtain an approximation to Prob 
(A;µ,d).  Approximate values are provided in Appendix B for a range of values for µ and d.  The 
nature of this approximation is also discussed in Appendix B. 
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2.1.4  Application. 

 
2.1.4.1  Example 1.  Suppose we have a system under development that has a technical 

requirement (TR) MTBF of 100 hours to be demonstrated with 80 percent confidence.  For the 
developmental program, a total of 2800 hours test time (T) at the system level has been 
predetermined for reliability growth purposes.  Based on historical data for similar type systems 
and on lower level testing for the system under development, the initial MTBF ( IM ) averaged 
over the first 500 hours ( It ) of system-level testing was expected to be 68 hours.  Using these 
data, an idealized reliability growth curve was constructed such that if the tracking curve 
followed along the idealized growth curve, the TR MTBF of 100 hours would be demonstrated 
with 80 percent confidence.  The growth rate (α) and the final MTBF (M(T)) for the idealized 
growth curve were 0.23 and 130 hours, respectively.  The idealized growth curve for this 
program is depicted on Figure 2. 
 

 
 

Figure 2.  Idealized Reliability Growth Curve. 
 

For this example, suppose we want to determine the operating characteristic (OC) curve 
for the program.  For this, we need to consider alternate idealized growth curves where the M(T) 
vary but the IM  and It  remain the same values as those for the program idealized growth curve; 
i.e., IM  = 68 hours and It  = 500 hours.  In varying the M(T), this is analogous to considering 
alternate values of the true MTBF for a reliability demonstration test of a fixed configuration 
system.  For this program, one alternate idealized growth curve was determined where M(T) 
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equals the TR whereas the remaining alternate idealized growth curves were determined for 
different values of the growth rate.  These alternate idealized growth curves along with the 
program idealized growth curve are depicted on Figure 3. 
 

 
 

Figure 3.  Program and Alternate Idealized Growth Curves. 
 

Now, for each idealized growth curve we find M(T) and the expected number of failures 
E(N) from equation (31).  Using the ratio M(T)/TR and E(N) as entries in the tables contained in 
Appendix B, we determine, by double linear interpolation, the probability of demonstrating the 
TR with 80 percent confidence.  This probability is actually the probability that the 80 percent 
lower confidence bound (80 percent LCB) for M(T) will be greater than or equal to the TR.  
These probabilities represent the probability of acceptance (P(A)) points on the OC curve for this 
program which is depicted on Figure 4.  The M(T), α, E(N), and P(A) for these idealized growth 
curves are summarized in the following table: 
 

M (T) α E (N) P (A) 
100 0.14 32.6 0.15 
120 0.20 29.2 0.37 
130 0.23 28.0 0.48 
139 0.25 26.9 0.58 
163 0.30 24.5 0.77 
191 0.35 22.6 0.90 
226 0.40 20.6 0.96 
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Figure 4.  Operating Characteristic (OC) Curve. 
 

From the OC curve, the Type I or producer risk is 0.52 (1-0.48) which is based on the 
program idealized growth curve where M(T) = 130.  Note that if the true growth curve were the 
program idealized growth curve, there is still a 0.52 probability of not demonstrating the TR with 
80 percent confidence.  This occurs even though the true reliability would grow to M(T) = 130 
which is considerably higher than the TR value of 100.  The Type II or consumer risk, which is 
based on the alternate idealized growth curve where M(T) = TR = 100, is 0.15.  As indicated on 
the OC curve, it should be noted that for this developmental program to have a producer risk of 
0.20, the contractor would have to plan on an idealized growth curve with M(T) = 167. 
 

2.1.4.2  Example 2.  Consider a system under development that has a technical 
requirement (TR) MTBF of 100 hours to be demonstrated with 80 percent confidence, as in 
Example 1.  The initial MTBF ( IM ) over the first 500 hours ( It ) of system level testing for this 
system was estimated to be 48 hours which, again as in Example 1, was based on historical data 
for similar type systems and on lower level testing for the system under development.  For this 
developmental program, it was assumed that a growth rate (α) of 0.30 would be appropriate for 
reliability growth purposes.  Now, for this example, suppose we want to determine the total 
amount of system level test time (T) such that the Type I or producer risk for the program 
idealized reliability growth curve is 0.20; i.e., the probability of not demonstrating the TR of 100 
hours with 80 percent confidence is 0.20 for the final MTBF value (M(T)) obtained from the 
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program idealized growth curve.  This probability corresponds to the probability of acceptance 
(P(A)) point of 0.80 (1-0.20) on the operating characteristic (OC) curve for this program. 
 

Now, to determine the test time T which will satisfy the Type I or producer risk of 0.20, 
we first select an initial value of T and, as in Example 1, find M(T) and the expected number of 
failures (E(N)) from equation (31).  Then, again, using the ratio M(T)/TR and E(N) as entries in 
the tables contained in Appendix B, we determine, by double linear interpolation, the probability 
of demonstrating the TR with 80 percent confidence.  An iterative procedure is then applied until 
the P(A) obtained from the table equals the desired 0.80 within some reasonable accuracy.  For 
this example, suppose we selected 3000 hours as our initial estimate of T and obtained the 
following iterative results: 
 

T M(T) E(N) P(A) 
3000 117.4 36.5 <0.412 
4000 128.0 44.6 <0.610 
5000 136.8 52.2 <0.793 
5500 140.8 55.8 0.815 
5400 140.0 55.1 0.804 
5300 139.2 54.4 0.790 
5350 139.6 54.7 0.796 
5375 139.8 54.9 0.800 

 
Based on these results, we determine T = 5375 hours to be the required amount of system 

level test time such that the Type I or producer risk for the program idealized growth curve is 
0.20. 
 

2.1.5  Summary.  The concepts of an operating characteristic (OC) analysis have been 
extended to the reliability growth setting.  Government (consumer) and contractor (producer) 
statistical risks have been expressed in terms of the underlying growth curve parameters, test 
duration, and reliability requirement.  In particular, for a given confidence level, these risks have 
been shown to depend solely on the expected number of failures during the growth test and the 
ratio of the MTBF to be achieved at the end of the growth program to the MTBF technical 
requirement to be demonstrated with confidence.  Formulas have been developed for computing 
these risks as a function of the test duration and growth curve planning parameters. 
 

The methodology developed and illustrated in this section should be of interest to RAM 
analysts responsible for structuring realistic reliability growth programs to achieve and 
demonstrate program objectives with reasonable statistical risks.  In particular, this methodology 
allows the RAM analysts to construct a reliability growth curve that considers both the 
Government and contractor risks prior to agreeing to a reliability growth program. 
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2.2 Subsystem Level Planning. 
 

2.2.1  Subsystem Reliability Growth.  This material is based on Reference [4]. 
 

2.2.1.1 Benefits and Special Considerations.  Conducting a subsystem reliability 
growth program prior to the start of system level testing can - 
 

• reduce the amount of system level testing, 
 

• reduce or eliminate many failure mechanisms (problem failure modes) early in the 
development cycle where they may be easier to locate and correct, 

 
• allow for the use of subsystem test data to monitor reliability improvement, 

 
• increase product quality by placing more emphasis on lower level testing and 

 
• provide management with a strategy for conducting an overall reliability growth 

program. 
 
Thus, subsystem reliability growth offers the potential for significant savings in testing cost. 
 
 To be an effective management tool for planning and assessing system reliability in the 
presence of reliability growth, it is important for the subsystem reliability growth process to 
adhere as closely as possible to the following considerations: 
 

• Potential high-risk interfaces need to be identified and addressed through joint 
subsystem testing, 

 
• Subsystem usage/test conditions need to be in conformance with the proposed system 

level operational environment as envisioned in the Operational Mode 
Summary/Mission Profile (OMS/MP), 

 
• Failure Definitions/Scoring Criteria (FD/SC) formulated for each subsystem need to 

be consistent with the FD/SC used for system level test evaluation. 
 

2.2.1.2  Overview of Subsystem Reliability Growth Planning Model – SSPLAN.  The 
subsystem reliability growth planning model, SSPLAN, provides the user with a means to 
develop subsystem testing plans for demonstrating a system mean time between failures (MTBF) 
goal prior to system level testing.  (The MTBF goal is also referred to as the MTBF objective 
(MTBFobj).)  In particular, the model is used to develop subsystem reliability growth planning 
curves that, with a specified probability, achieve a system MTBF objective with a specified 
confidence level.  More precisely, associated with the subsystem MTBFs growing along a set of 
planned growth curves for given subsystem test durations is a probability; this is termed the 
probability of acceptance (PA), the probability that the system MTBF objective will be met at the 
specified confidence level.  The complement of PA, 1-PA, is termed the producer’s (or 
contractor’s) risk:  the risk of not demonstrating the system MTBF objective at the specified 
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confidence level when the subsystems are growing along their target growth curves for the 
prescribed test durations.  Note that PA also depends on the fixed MTBF of any non-growth 
subsystem and on the lengths of the demonstration tests on which the non-growth subsystem 
MTBF estimates are based. 
 
 SSPLAN estimates PA for a given value of the final combined growth subsystem MTBF 
(MTBFG,sys) by simulating the reliability growth of each subsystem and calculating a statistical 
lower confidence bound (LCB) for the final system MTBF based on the growth and non-growth 
subsystem simulated failure data.  If the system LCB, at the specified confidence level, meets or 
exceeds the specified MTBF goal, then the trial is labeled a success.  SSPLAN runs as many as 
5000 trials, and estimates PA as the number of successes divided by the number of trials. 
 
 One of the model’s primary outputs is the growth subsystem test times required to meet 
the system level MTBF goal at the specified confidence level and PA probability.  The model 
determines the subsystem test times by using a specified fixed allocation of the combined final 
failure intensity to each of the individual growth subsystems.  
 
 As a reliability management tool, the model can serve as a means for prime contractors to 
coordinate/integrate the reliability growth activities of their subcontractors as part of their overall 
strategy in implementing a subsystem reliability test program for their developmental systems. 
 

2.2.1.3  List of Notation.  There are some variant terms in the following parameter list to 
show that the form of some parameters depends on the context in which they are used.  For 
example, T, iDT ,  and iGT ,  indicate, respectively, that time may be used generically, specifically 
for non-growth subsystem i and specifically for growth subsystem i. 
 
 t  test time 
 T  total test time ( )Tt   0 ≤<  
 F (t)  total number of subsystem failures by time t 
 E [F (t)] expected number of subsystem failures by time t 
 λ   AMSAA model scale parameter ( )λ > 0  for growth subsystem 
 β   AMSAA model shape (or growth) parameter ( )β > 0  for growth  

subsystem 
 α   growth rate ( )α β= −1 , ( )0 1< <α  
 t I   initial time period for subsystem growth test 

( )tI >0  
 MTBF  Mean Time Between Failures 
 MI   initial average MTBF over interval ( ]0,t I , ( )MI >0  
 λ I   initial average failure intensity over interval ( ]0,t I  
 ms  management strategy ( )ms>0  

 ( )ρ T   instantaneous failure intensity at time T, ( )[ ]ρ T >0  
 M (T)  instantaneous MTBF at time T 
 MTBFobj system MTBF objective to be demonstrated with confidence γ 
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 PA   probability of acceptance associated with demonstrating MTBFobj 

 LCB  lower confidence bound 
 D  demonstration (non-growth) test data or estimator 
 G  growth (test data or estimator) 
 i  subsystem index number 
 TD i,   total amount of demonstration  or “equivalent demonstration”  

(non-growth) test time for subsystem i 
 TG i,   total amount of growth test time for subsystem i 
 TMAX,i  specified maximum allowable growth test time for subsystem i. 
   Thus  iMAX, iG, T T ≤   
 nD ,i  number of failures during a demonstration test of length TD,i for a  

non-growth subsystem i.  Also, number of “equivalent demonstration”  
failures for growth subsystem i during growth test 

nG ,i  number of failures during a test time TG,i for a growth 
subsystem i 

MD i,   demonstration (constant) MTBF for non-growth subsystem i 

( )MD i, > 0  
 MG i,   Final MTBF for growth subsystem i 
 ^  denotes an estimate when placed over a parameter 

 ( )iDiD T ,,

∧

ρ  estimate of 1
,

−
iDM    

)(T iG,  , iGρ  equals 1
,

−
iGM  

)(T iG, , iG
∧

ρ  estimate of )(T iG, , iGρ  
 χ df

2   chi-squared random variable with “df” degrees of freedom 
 SYSρ   final system failure intensity  
 

SYSG ,
ρ   total failure intensity contribution of growth subsystems to SYSρ  

 ai   fraction of SYSG ,ρ  allocated to growth subsystem i 

 MG SYS,   final MTBF of combined growth subsystems, i.e., -1
sysG,sysG,   M ρ=  

 SYSDN ,   system demonstration “equivalent” number of failures 
 TD SYS,   system demonstration “equivalent” test time 
 mle  maximum likelihood estimate 
 ~  symbol for “distributed as” a specified random variable 
 iDM ,

ˆ   subsystem i MTBF estimate of demonstration or  
“equivalent demonstration” MTBF 

 iGM ,
ˆ   subsystem i mle for final MTBF of growth subsystem 

 SYSM̂   estimate of final system MTBF 
 γ   specified confidence level for demonstrating MTBFobj  
 χ γdf ,

2   chi-squared 100γ percentile point for df degrees of freedom  
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 iρ̂   estimate of final subsystem i failure intensity 
 SYSρ̂   estimate of final system failure intensity 
 K  number of subsystems 
 LCBD i, ,γ  subsystem i LCB at γ  confidence level from demonstration data 

LCBG i, ,γ  subsystem i LCB at γ  confidence level from growth data 
 

The following terms are used for Cost calculations: 
 Ti   amount of test time for subsystem i 
 ( )CF i   cost per failure for subsystem i 

 ( )CT i
  cost per hour for subsystem i 

 CTotal   total testing cost 
 Ci[∆G,i(TG,i) cost contribution of growth subsystem i to Ctotal as a function of ∆G,i(TG,i) 
 λ i   scale parameter for growth subsystem i 
 iβ   shape parameter for growth subsystem i 
 iα   growth rate for growth subsystem i 
 ( )

NEWsysGM ,  new value of sysGM ,  to use in search routine 

 ( )
LBsysGM ,  lower bound for sysGM ,  

 ( )
UBsysGM ,  upper bound for sysGM ,  

 ( )PA LB
  estimated PA  associated with ( )LBsysGM ,  

 ( )PA UB
  estimated PA  associated with ( )

UBsysGM ,  

 ( )PA GOAL  desired PA  
 

2.2.2  SSPLAN Methodology. 
 

2.2.2.1  Model Assumptions.   The SSPLAN methodology assumes that a system 
may be represented as a series of 1≥K  independent subsystems.  (The theory allows for 1=K  
but the current computer implementation requires 2≥K .) 
 

 
System    =    Subsystem 1    +    ...    +    Subsystem K

 
 
This means that a failure of any single subsystem results in a system level failure and that a 
failure of a subsystem does not influence (either induce or prevent) the failure of any other 
subsystem.  SSPLAN allows for a mixture of test data from growth and non-growth subsystems, 
but in its current implementation, at least one growth subsystem is required to run the model.  
The model utilizes the following assumption for the growth subsystems: 
 

• The number of failures occurring over a period of test time follows a 
nonhomogeneous Poisson process (NHPP) with mean value function 
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    ( )[ ] ( )0,, >= tttFE βλλ β    (1) 
 
where E[F(t)] is the expected number of failures by time t, λ  is the scale parameter because it 
depends upon the unit of measurement chosen for t, and β  is the growth (or shape) parameter 
because it characterizes the shape of the graph of the failure intensity function (the derivative of 
(1) with respect to t).  The parameters λ and β may vary from subsystem to subsystem and will 
be subscripted by a subsystem index number when required for clarity.  Non-growth subsystems 
are assumed to have constant failure rates. 
 

2.2.2.2  Mathematical Basis for Growth Subsystems. 
 

2.2.2.2.1  Initial Conditions.  The power function shown in (1) together with the initial 
conditions described in this section provide a framework for a discussion of the way SSPLAN 
develops reliability growth curves.  Together they provide a starting point for describing each 
growth subsystem’s MTBF as a function of the parameters λ , β  and t.  Since λ  is not 
convenient to directly work with for planning purposes, we shall relate λ to an initial or average 
subsystem MTBF over an initial period of test time.  First, we note that the growth parameter, 
β , is related to the growth rate, α , by the following: 
 
    ( )01 >−= βαβ      (2) 
 
For planned growth situations, α  must be in the interval (0,1).  Additional guidance on choosing 
α  may be gained from Ellner & Trapnell [5]. 
 
 The initial conditions for the model consist of: 
 

• an initial time period, tI , one choice for tI is the amount of planned test items prior to 
the implementation of any corrective actions, and 

 
• the initial reliability, MI , representing the average reliability (MTBF) over the 

interval ( ]0, tI . 
 
From this, note that: 
 

    ( )01
>= I

I
I M

M
λ     (3) 

 
where λ I  is the average failure intensity over the interval ( ]0,tI .  The fact that (1) must be 
consistent with the initial conditions allows the scale parameter, λ , to be expressed in terms of 
planning parameters tI, MI, and α  To do so, note the expected number of failures by time tI  is: 
 
    ( )[ ] ( )0>= IIII tttFE λ    (4) 
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Using (1), we see that the expected number of failures by time tI  is also given by 
 
    ( )[ ] ( )0,, >= III tttFE βλλ β    (5) 
 
By equating (4) and (5) and by using the relationship α β= −1  from (2), an expression for λ  
may be developed: 
 

    ( )0, >== αλλ
α

α
I

I

I
II t

M
tt    (6) 

 
 In addition to using both MI  and tI  as initial growth subsystem input parameters, the 
model allows a third possible input parameter, termed the planned management strategy ms, 
which represents the fraction of the initial subsystem failure intensity that is expected to be 
addressed through corrective actions.  The relationships among these three parameters are 
revealed in the following discussion. 
 
 Since reliability growth occurs when correctable failure modes are surfaced and 
(successful) fixes are incorporated, it is desired to have a high probability of observing at least 
one correctable failure by time tI .  In what follows we shall utilize a probability of 0.95.  From 
our assumptions, the number of failures that occur over the initial time period tI , is Poisson 
distributed with expected value λ I tI.  Thus 
 

( ) 1)  ms  0 and 0  M( 1195.0 I , ≤<>−=−=







 ×
−

××−
i

M
tms

tms tee I

I

IIλ  
 (7) 

 
From (7), it is evident that specifying any two of the parameters is sufficient in determining the 
third parameter.  Thus, there are three options for the user when entering the initial conditions for 
growth subsystems. 
 

2.2.2.2.2  Failure Intensity and Mean Time Between Failures – MTBF.  The 
derivative with respect to time of the expected number of failures function (1) is: 
 
    ( ) ( )0,,1 >= − ttt βλβλρ β    (8) 
 
 The function ( )tρ  represents the instantaneous failure intensity at time t.  The reciprocal 
of ( )tρ  is the instantaneous MTBF at time t: 
 
 

    ( ) ( ) ( )( )0,1
>= tt

t
tM ρ

ρ
   (9) 
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Equations (8) and (9) provide much of the foundation for a discussion of how SSPLAN develops 
reliability growth curves for growth subsystems.  Figure 5 shows a graphical representation of 
subsystem reliability growth. 
 

MTBF

0 TttI

M(T)M(t) = [λβt ]β−1 −1

MI

Figure 5.  Reliability Growth Based On
AMSAA Continuous Tracking Model.  

 
2.2.2.3  Mathematical Basis for Non-growth Subsystems.  Based on the constant 

failure rate assumption, the input parameters that characterize a non-growth subsystem are its 
fixed reliability estimate, M, and the length of the demonstration test, T, upon which the constant 
MTBF estimate is based. 
 

2.2.2.4  Algorithm for Estimating Probability of Acceptance PA.  Rather than use 
purely analytical methods, SSPLAN uses simulation techniques to estimate the probability of 
achieving a system MTBF objective with a specified confidence level.  This estimate of PA is 
calculated by running the simulation a large number of trials. 
 
 Using the parameters that have been inputted and calculated at the subsystem level, the 
model generates “test data” for each subsystem for each simulation trial, thereby developing the 
data required to produce an estimate for the failure intensity for each subsystem.  The test 
intervals and estimated failure intensities corresponding to the set of subsystems that comprise 
the system provide the necessary data for each trial of the simulation. 
 
 The model then uses a method developed for discrete data (the Lindström-Madden 
Method) to “roll up” the subsystem test data to arrive at an estimate for the final system 
reliability at a specified confidence level, namely, a statistical lower confidence bound (LCB) for 
the final system MTBF.  In order for the Lindström-Madden method to be able to handle a mix 
of test data from both growth and non-growth subsystems, the model first converts all growth 
(G) subsystem test data to an “equivalent” amount of demonstration (D) test time and 
“equivalent” number of demonstration failures.  This conversion process is done so that all 
subsystem results are expressed in a common format, namely, in terms of fixed configuration 
(non-growth) test data.  (The equivalent demonstration test time and the equivalent 
demonstration number of failures are, respectively, the length of time and the number of failures 
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a non-growth test would have to achieve to produce an {MTBF point estimate, MTBF LCB} pair 
that is equivalent to the respective estimates from a growth test.)  By treating growth subsystem 
test data in this way, a standard lower confidence bound formula for time-truncated 
demonstration testing may be used to compute the system reliability LCB for the combination of 
“converted” growth and non-growth test data. 
 
 SSPLAN can run as many as 5000 trials.  For each simulation trial, if the LCB for the 
final system MTBF meets or exceeds the specified system MTBF objective, then the trial is 
termed a success.  An estimate for the probability of acceptance is the ratio of the number of 
successes to the number of trials. 
 
 The algorithm for estimating the probability of acceptance is described in greater detail 
by expanding upon the following four topics: 
 

• generating “test data” estimates for growth subsystems 
 

• generating “test data” estimates for non-growth subsystems 
 

• converting growth subsystem data to “equivalent” demonstration data 
 

• using the Lindström-Madden method for computing system level statistics 
 

2.2.2.4.1  Generating Estimates for Growth Subsystems.  There are two quantities of 
interest for each growth subsystem for each trial of the simulation -  
 

• the total amount of test time, TG i, , and 
 

• the estimated failure intensity at that time, ( )iGiG T ,,ρ̂ . 
 
 To calculate TG i, , note that from the initial input conditions we have values for the growth 
parameter, β  (using (2)), and the scale parameter, λ  (using (3) and (6)).  Also, note that the 
final growth subsystem MTBF, MG i, , can be calculated by dividing the final MTBF of the 
combined growth subsystems, MG SYS, , by the subsystem failure intensity allocation.  Equations 
(8) and (9) can then be combined and rearranged to solve for TG i, : 
 

 

( )[ ] ( )

( )( )1;0,,,1
,,,

1
1

,,

, ≠>=








−

ββλ

βλ β

iGiGiG

iGiG

iG TMT

TM

T  (10) 
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 To generate the estimated failure intensity, ( )iGiG T ,,ρ̂ , the model uses λ , β , TG i,  and (1) 
with t = TG,i to calculate a Poisson distributed random number, iGn , , which serves as an outcome 
for the number of growth failures during a simulation trial.  The model then generates a chi-
squared random number with iGn ,2  degrees of freedom and uses relation (12) below referenced 
in Crow [6] for obtaining a random value from the distribution for the estimated growth 
parameter, conditioned on the number of growth failures, iGn , , during the trial: 
 

    
( )

2
2

,,

,

2
~ˆ

iGn

iGn
χ
β

β     (12) 

 
where β  is obtained from the initial input and (2).  One can show iGn , , and the maximum 
likelihood estimates (mle’s) for λ and β satisfy the following: 
 

   ( )0,ˆ,ˆˆ
,

ˆ
,, >= iGiG TTn iG βλλ β    (13) 

 
In light of equation (1), this result is not surprising. 
 
Using mle’s for the parameters in (8) yields: 
 

   ( ) 1ˆ
,,,

ˆˆˆ −= ββλρ iGiGiG TT     (14) 
 
Rearranging terms in (14) we obtain: 
 

    ( )
iG

iG
iGiG T

T
T

,

ˆ
,

,,

ˆˆ
ˆ

βλ
ρ

β

=    (15) 

 
Substituting (13) into (15) we conclude: 
 

   ( )
iG

iG
iGiG T

n
T

,

,
,,

ˆ
ˆ

β
ρ =    (16) 

 
Thus using nG,i, and the corresponding conditional  estimate for β  generated from (12), an 
estimate for the failure intensity, ( )iGiG T ,,ρ̂ , can be obtained for each growth subsystem for each 
trial of the simulation. 
 

2.2.2.4.2  Generating Estimates for Non-growth Subsystems.  There are two quantities 
of interest for each non-growth subsystem for each trial of the simulation - 
 

• the total amount of test time, TD i, , and 
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• the estimated failure intensity, ( )iDiD T ,,ρ̂ . 
 
 The total amount of test time, TD i, , is an input planning parameter that represents the 
length of the demonstration test on which the non-growth subsystem MTBF estimate is based.  
To generate the estimated failure intensity, ( )iDiD T ,,ρ̂ , the model first calculates (this is done 
only once for each non-growth subsystem in SSPLAN) the expected number of failures: 
 

   ( )[ ]
iD

iD
iD M

T
TFE

,

,
, =    (18) 

 
where MD i,  is an input planning parameter representing the constant MTBF for the non-growth 
subsystem.  The expected number of failures from (18) is then used as an input parameter 
(representing the mean of a Poisson distribution) to a routine that calculates a Poisson distributed 
random number, iDn , , which is an outcome for the number of failures during a simulation trial.  
An estimate for the failure intensity follows: 
 

   ( )
iD

iD
iDiD T

n
T

,

,
,,ˆ =ρ    (19) 

 
 2.2.2.4.3  Calculating Lower Confidence Bound for System MTBF.  After all 
subsystem estimates have been calculated for a particular trial, SSPLAN uses a two-step 
approach to calculate the system reliability lower confidence bound by: 
 

1. converting all growth subsystem data to “equivalent” demonstration data, that is, data 
from a fixed configuration.  These data consist of: 

• TD i,  - subsystem i equivalent demonstration test time and 
• iDn ,  - subsystem i equivalent demonstration number of failures 

 
2. using the Lindström-Madden method to obtain system level statistics for calculating 

the LCB for the system MTBF. 
 

2.2.2.4.3.1  Converting Growth Subsystem Data to “Equivalent” Demonstration 
Data.  There are two equivalency relationships that must be maintained for the approach to be 
valid, namely, the demonstration data and the growth data must yield: 
 
 1. the same subsystem MTBF point estimate: 
 
    iGiD MM ,,

ˆˆ =       (20) 
 
 2. and the same subsystem MTBF lower bound at a specified confidence level γ: 
 
    γγ ,,,, iGiD LCBLCB =      (21) 
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 Starting with the left side of the second equivalency relationship, (21), note that the lower 
confidence bound formula for time-truncated demonstration testing is: 
 

    2
,22

,
,,

,

2

γ
γ χ +

=
iDn

iD
iD

T
LCB      (22) 

 
where TD i,  is the demonstration test time, iDn ,  is the demonstration number of failures, γ  is the 

specified confidence level and 2
,22 , γχ +iDn  is a chi-squared 100 γ percentile point with 22 , +iDn  

degrees of freedom.  Using an approximation equation developed by Crow, the lower confidence 
bound formula for growth testing (the right side of (21)) is: 
 

    
2

,2

,,
,,

,

ˆ

γ
γ χ +

≈
iGn

iGiG
iG

Mn
LCB      (23) 

 
where iGn ,  is the number of growth failures during the growth test, iGM ,

ˆ  is the mle for the 

MTBF and 2
,2, γχ +iGn  is a chi-squared 100γ percentile point with 2, +iGn  degrees of freedom. 

 
 Since we want (22) and (23) to yield the same estimate, we begin by equating their 
denominators: 
 

    
2

222 ,
,,,

iG
iDiGiD

n
nnn =⇒+=+    (24) 

 
Equating numerators from (22) and (23) yields: 
 

    
2

ˆ
ˆ2 ,,

,,,,
iGiG

iDiGiGiD

Mn
TMnT =⇒=    (25) 

 
Dividing (25) by (24), and using (20) yields: 
 

    iGiDiDiG
iD

iD
iD MnTM

n
T

M ,,,,
,

,
,

ˆˆˆ =⇒==    (26) 

 
Substituting (24) into (26) yields: 
 

    
2

ˆ
,,

,
iGiG

iD

Mn
T =       (27) 

 
Replacing the MTBF estimate by its failure intensity estimate from (14) yields: 
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    ( )0,ˆ,ˆ
ˆˆ2

,1ˆ
,

,
, >=

− iG

iG

iG
iD T

T

n
T βλ

βλ β
  (28) 

 
Multiplying both numerator and denominator of (28) by TG i, , replacing the estimate of the 
expected number of failures (in the denominator) by the observed number of growth failures and 
canceling the term iGn ,  in the numerator and denominator yields: 
 

    
β̂2
,

,
iG

iD

T
T =     (29) 

 
SSPLAN uses (24) and (29) in converting growth subsystem data to equivalent demonstration 
data. 
 

2.2.2.4.3.2  Using the Lindström-Madden Method for Computing System Level 
Statistics.  A continuous version of the Lindström-Madden method for discrete subsystems is 
used to compute an approximate lower confidence bound (LCB) for the final system MTBF from 
subsystem demonstration (non-growth) and “equivalent” demonstration (converted growth) data.  
The Lindström-Madden method typically generates a conservative LCB, which is to say the 
actual confidence level of the LCB is at least the specified level.  It computes the following four 
estimates in order: 
 

1. the equivalent amount of system level demonstration test time.  (Since this estimate is 
the minimum demonstration test time of all the subsystems, it is constrained by the 
least tested subsystem.) 

 
2. the estimate of the final system failure intensity, which is the sum of the estimated 

final growth subsystem failure intensities and non-growth subsystem failure rates 
 

3. the “equivalent” number of system level demonstration failures, which is the product 
of the previous two estimates. 

 
4. The approximate LCB for the final system MTBF at a given confidence level, which 

is a function of the equivalent amount of system level demonstration test time and the 
equivalent number of system level demonstration failures. 

 
 In equation form, these system level estimates are, respectively: 
 
    iDSysD TT ,, min=   for i = 1..K   (30) 
 

    ∑
=

=
K

i
iSys

1

ˆˆ ρρ       (31) 
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where 
iD

i M ,
ˆ
1ˆ =ρ  and =iDM ,

ˆ  the MTBF estimate for subsystem i. 

 
    SysSysDSysD TN ρ̂,, ×=      (32) 
 

    
2

,22

,

,

2

γ
γ χ +

=
SysDN

SysDT
LCB      (33) 

 
2.2.2.5  Calculation of Testing Costs.  SSPLAN can be used to calculate the cost of 

carrying out a subsystem reliability growth plan for any given solution.  The model does not 
address the initial start-up, or fixed costs since they are the same for any solution.  The model 
does address all costs that are a function of the number of failures and all costs that are a function 
of time, as shown respectively in the following formula: 
 
    ( )[ ] ( ) ( ){ }

{ }
∑

∈

×+×=
subsystemsalli

iTiiFiTotal CTCTFEC i   (34) 

 
In (34), ( )[ ]iTFE i  is the expected number of failures by time Ti  for subsystem i, ( )CF i  is the 

cost per failure for subsystem i, Ti  is the amount of test time for subsystem i and ( )CT i
 is the 

cost per unit of time (usually per hour) for subsystem i.  So, the total testing cost, CTotal , is the 
sum, over all subsystems, of the costs associated with testing each subsystem. 
 
 Once again, it is useful to treat growth and non-growth subsystems separately. 
 
 2.2.2.5.1  Calculating Cost for Growth Subsystems.  For a given solution, we can 
calculate the cost contribution to Ctotal of a growth subsystem i in terms of TG,i and growth 
parameters λi, βi by directly using (34) with Ti = TG,i.  Note by (1), ( )[ ] i

iGiGi tTFE βλ ,, = .  
Alternately, we can express this cost in terms of the achieved subsystem failure intensity,  
∆G,i (TG,i), and λi, βi,  To write the cost equation in terms of the subsystem failure intensity, we 
begin by obtaining an expression for TG i,  from (8): 
 
    ( ) ( )0,, ,

1
,,, >= −

iGiiiGiiiGiG TTT i βλβλρ β   (35) 
 
Isolating the TG,i term on one side of (35) yields: 
 

    
( )

ii

iGiG
iG

T
T i

βλ
ρβ ,,1

, =−  (36) 

 
Raising both sides of (36) to the ( )1 1β i −  power: 
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(Note 1≠iβ since subsystem i is a growth subsystem.) 
 
Substituting from (2) yields the following intermediate result: 
 

 ( )[ ] [ ] 1)  0( i
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αβλρ αα ii
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Now, to obtain an expression for ( )[ ]iTFE i , we begin with (1): 
 
    ( )[ ] i

i iGii TTFE βλ ,=    (39) 
 
Substituting for TG i,  from (38) yields: 
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Rearranging terms in (40) yields: 
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  (41) 
 
Finally, the cost contribution in (34) of growth subsystem i can be expressed in terms of its 
failure intensity using (41) and (38): 
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 2.2.2.5.2  Calculating Cost for Non-growth Subsystems.  To obtain the cost 
contribution of a non-growth subsystem, we use (18) to express ( )[ ]iDi TFE ,  in terms of TD i,  and 
MD i, : 

 ( )[ ] ( ) ( )iTiDiF
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where )(T    iD, 
1
, iD,ρ=−
iDM  

 
2.2.2.6  Methodology for a Fixed Allocation of Subsystem Failure Intensities.  The 

methodology utilizes a fixed allocation, dI, of ∆G,SYS to each growth subsystem i thus  
∆G,I = di∆G,SYS.  For this allocation, SSPLAN first determines if a solution exists that satisfies the 
criteria given by the user during the input phase.  Specifically, SSPLAN checks to see if the 
desired probability of acceptance can be achieved with the given failure intensity allocations and 
maximum subsystem test times.  If a solution does exist, SSPLAN will proceed to find the 
solution that meets the desired probability of acceptance within a small positive number epsilon. 
 
 2.2.2.6.1  Determining the Existence of a Solution.  To determine if a solution is 
possible, SSPLAN uses (8) and (9) for each subsystem, with T set to the subsystem’s maximum 
test time, to calculate the maximum possible MTBF for each subsystem.  The maximum 
subsystem MTBF is multiplied by its failure intensity allocation to determine its influence on the 
system MTBF.  For example, if a subsystem can grow to a maximum MTBF of 1000 hours and it 
has a failure intensity allocation of 0.5 (that is, its final failure intensity accounts for half of the 
total final failure intensity due to all of the growth subsystems), then that particular subsystem 
will limit the combined growth subsystem maximum MTBF to 500 hours.  In other words, the 
maximum MTBF to which the growth portion of the system can grow, sysGMTBF , , is the 
minimum of the products (subsystem final MTBF multiplied by the subsystem failure intensity 
allocation) from among all the growth subsystems. 
 
 The probability of acceptance, PA , is then estimated using sysGMTBF , .  If the estimated 
PA  is less than the desired PA , then no solution is possible within the limits of estimation 
precision for PA , and SSPLAN will stop with a message to that effect. 
 
 2.2.2.6.2  Finding the Solution.  On the other hand, if the estimated PA  is greater than or 
equal to the desired PA , then a solution exists.  If, by chance, the desired PA  has been met 
(within a small number epsilon) then SSPLAN will use sysGMTBF ,  as its solution.  It is more 
likely, however, that the estimated PA  corresponding to sysGMTBF ,  exceeds the requirement, 
meaning that the program resulting in sysGMTBF ,  contains more testing than is necessary to 
achieve the desired PA .  SSPLAN proceeds, then, to find a value for sysGMTBF ,  that meets the 
desired PA  within epsilon. 
 
 To save time, PA  is initially estimated using a reduced number of iterations equal to one 
tenth of the requested number.  As soon as the estimated PA  approaches the desired PA , the full 
number of iterations is used. 
 
 For a given fixed failure intensity allocation, PA  increases as sysGMTBF ,  increases.  Every 
value of sysGMTBF ,  determines a unique set of reliability growth curves, and thus a unique PA .  
To find the set of growth curve test times that give rise to the desired PA , SSPLAN first finds the 
upper and lower bounds for sysGMTBF , .  The initial upper bound for sysGMTBF ,  is the value 
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found in verifying the existence of a solution; this value is the maximum possible value for 
sysGMTBF ,  (based on the maximum test times inputted by the user).  The initial lower bound for 

sysGMTBF ,  is chosen arbitrarily; if the value chosen results in a PA  that is higher than the desired 
PA , then the lower bound for sysGMTBF ,  is successively decreased until the resulting PA  is less 
than the desired PA .  At that point, upper and lower bounds for sysGMTBF ,  have been 
established, and SSPLAN uses a linear interpolation to find the value of sysGMTBF ,  that gives 
rise to an estimated PA  that meets the desired PA .  At each step of the search, sysGMTBF ,  is 
updated using the following equation (actually, the algorithm does all comparisons in terms of 
failure intensities, but the equation below shows the comparisons in terms of MTBFs to be 
consistent with Reference [4]): 
 

  
( ) ( )
( ) ( )

( ) ( )
( ) ( )LBAUBA

LBAGOALA

LBsysGUBsysG

LBsysGNEWsysG

PP
PP

MTBFMTBF
MTBFMTBF

−
−

=
−

−

,,

,,   (44) 

 
where ( )

UBsysGMTBF ,  and ( )LBsysGMTBF ,  refer to the upper and lower bounds, respectively, for 

sysGMTBF , ; ( )PA UB
 and ( )PA LB

 refer to the estimated PA  values associated with each of the 
preceding sysGMTBF ,  values, respectively; and ( )

NEWsysGMTBF ,  is the new value of  sysGMTBF ,  
to be used in the search algorithm. 
 
 The bounds are systematically updated during the search as follows.  If the estimated 
value of PA  associated with ( )NEWsysGMTBF ,  is less than the desired probability of acceptance, 

( )PA GOAL
, then ( )NEWsysGMTBF ,  becomes the new lower bound for the next search.  If the 

estimated PA  is greater than the desired PA , then ( )
NEWsysGMTBF ,  becomes the new upper 

bound.  The solution is found when the estimated PA  is within epsilon of the desired PA  or when 
the lower and upper bounds on sysGMTBF ,  are within epsilon of each other. 
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APPENDIX B 
TABLES 

 
The following tables provide approximations to the probability of acceptance, 
( )dAob ,;Pr µ , where µ  denotes the expected number of failures and d = M(T)/TR.  The 

tabular entries were calculated using a modification to Equation (25).  This modification 
entails (1) approximating (n)z2

γ  by 2
2,n4n γχ +  and (2) conditioning on 2≥N  instead of 

1≥N .  Thus, in Equation (25) the expression µ-e-1  is replaced by 
µµ µ -- e- e-1  1)P(N-1 =≤  and the summation is over 2≥N . 

 
The approximation used for (n)z2

γ  follows from the lower confidence bound 
approximation given by 
 

nM̂)/n()sn,( 2
2,n γγ χ +≅l    

 (32) 
 
where nM̂  is the mle of M(T) calculated from the observed data s = (t1, t2,...tn).  Here it  
denotes the cumulative operating time to the thi  failure.  This approximation was 
suggested by Dr. Larry Crow for conveniently approximating lγ(n, s).  It has been our 
experience that the approximation in (32) results in slightly more conservative lower 
bounds on ( )TM  than lγ(n, s).  This implies that use of the corresponding approximation 
to (n)z 2

γ  would yield slightly smaller values of ( )dAob ,;Pr µ  than one would obtain by 

utilizing (n)z2
γ .  Based on our experience with ( )dAob ,;Pr µ  estimated by simulation, 

the approximating values appear to be within 0.01 of values obtained through simulation.  
We also observed that the approximation improves as n increases.  The comparison 
between the lower confidence bound approximation given by (32) and the lower 
confidence bound using (n)z 2

γ  was based on Table C-2 contained in Section 3.  Since the 
entries in this table were for 2≥n , the probability of acceptance, ( )dAob ,;Pr µ , was 
conditioned on 2≥N .  In most cases of interest for the model discussed in this report, 
Prob ( )2≥N  will be close to one.  In this situation, conditioning on 2≥N  yields values 
of ( )dAob ,;Pr µ  that are, for practical purposes, essentially the same as those obtained by 
conditioning on 1≥N . 
 

The entries in these tables were calculated using the well-known relationship 
between the complement of a Chi-square distribution function and the cumulative 
Poisson sum.  This relationship was applied to calculate 
 


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


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µ
≥χ γ
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(n) z
   Prob

2
2
2n  

 
in the expression for ( )dAob ,;Pr µ  in Section 2.1.3 with (n) z 2

γ  replaced by its 

approximation, i.e., 2
2,n4n γχ + .  In terms of the cumulative Poisson sum, this yields 
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where 
 

).(/)n(w 2
2,n dµχ γ+=  

 
With additional computational effort, one can more precisely calculate ( )dAob ,;Pr µ  by 
iteratively solving for ( )nzγ  as the z-solution to Equation (13) of Section 2.1.3 over an 

appropriate range of n.  Then Equation (33) can be utilized with 2
,22 γχ +nn  replaced by 

( ) 22 nzγ . 
 

The tables contained in this appendix are approximation values of ( )dAob ,;Pr µ  
for three confidence levels; namely, for γ = 0.70, γ = 0.80, and γ = 0.90. 
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TABLE FOR 
70 PERCENT CONFIDENCE 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR          5           6            7             8           9            10           11           12 
 
 
   1.00 0.131 0.150 0.163 0.173 0.180 0.186 0.191 0.195 
   1.05 0.150 0.171 0.187 0.199 0.208 0.216 0.224 0.230 
   1.10 0.169 0.194 0.212 0.226 0.238 0.249 0.258 0.266 
   1.15 0.189 0.217 0.238 0.255 0.269 0.282 0.294 0.304 
   1.20 0.209 0.240 0.264 0.284 0.301 0.316 0.330 0.343 
   1.25 0.231 0.264 0.291 0.314 0.334 0.351 0.368 0.383 
   1.30 0.252 0.289 0.319 0.344 0.367 0.387 0.405 0.422 
   1.35 0.274 0.314 0.347 0.375 0.400 0.422 0.443 0.462 
   1.40 0.296 0.339 0.375 0.405 0.432 0.457 0.479 0.500 
   1.45 0.318 0.364 0.402 0.435 0.465 0.491 0.515 0.538 
   1.50 0.340 0.389 0.430 0.465 0.496 0.525 0.550 0.574 
   1.55 0.362 0.414 0.457 0.494 0.527 0.557 0.584 0.609 
   1.60 0.384 0.438 0.484 0.523 0.557 0.588 0.616 0.642 
   1.65 0.406 0.462 0.510 0.550 0.586 0.618 0.647 0.673 
   1.70 0.427 0.486 0.535 0.577 0.614 0.647 0.676 0.703 
   1.75 0.448 0.509 0.560 0.603 0.641 0.674 0.704 0.730 
   1.80 0.469 0.531 0.583 0.628 0.666 0.700 0.729 0.756 
   1.85 0.489 0.553 0.606 0.651 0.690 0.724 0.754 0.780 
   1.90 0.509 0.575 0.628 0.674 0.713 0.746 0.776 0.802 
   1.95 0.529 0.595 0.650 0.695 0.734 0.768 0.797 0.822 
   2.00 0.548 0.615 0.670 0.716 0.754 0.787 0.816 0.840 
   2.05 0.566 0.634 0.689 0.735 0.773 0.806 0.833 0.857 
   2.10 0.584 0.652 0.708 0.753 0.791 0.823 0.849 0.872 
   2.15 0.601 0.670 0.725 0.770 0.807 0.838 0.864 0.885 
   2.20 0.618 0.687 0.742 0.786 0.823 0.853 0.877 0.898 
   2.25 0.634 0.703 0.758 0.802 0.837 0.866 0.890 0.909 
   2.30 0.650 0.719 0.773 0.816 0.850 0.878 0.901 0.919 
   2.35 0.665 0.733 0.787 0.829 0.863 0.889 0.911 0.928 
   2.40 0.679 0.747 0.800 0.841 0.874 0.900 0.920 0.936 
   2.45 0.693 0.761 0.813 0.853 0.884 0.909 0.928 0.943 
   2.50 0.706 0.774 0.825 0.864 0.894 0.917 0.936 0.950 
   2.55 0.719 0.786 0.836 0.874 0.903 0.925 0.942 0.955 
   2.60 0.732 0.797 0.846 0.883 0.911 0.932 0.948 0.960 
   2.65 0.743 0.808 0.856 0.892 0.918 0.938 0.954 0.965 
   2.70 0.755 0.818 0.865 0.900 0.925 0.944 0.958 0.969 
   2.75 0.766 0.828 0.874 0.907 0.932 0.950 0.963 0.973 
   2.80 0.776 0.837 0.882 0.914 0.937 0.954 0.967 0.976 
   2.85 0.786 0.846 0.889 0.920 0.943 0.959 0.970 0.978 
   2.90 0.795 0.855 0.896 0.926 0.947 0.963 0.973 0.981 
   2.95 0.804 0.862 0.903 0.932 0.952 0.966 0.976 0.983 
   3.00 0.813 0.870 0.909 0.937 0.956 0.969 0.979 0.985 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        13          14          15           16         17           18            19          20 
 
 
   1.00 0.199 0.202 0.206 0.208 0.211 0.213 0.215 0.217 
   1.05 0.235 0.241 0.245 0.250 0.254 0.258 0.262 0.265 
   1.10 0.274 0.281 0.288 0.294 0.300 0.306 0.311 0.316 
   1.15 0.314 0.323 0.332 0.340 0.348 0.355 0.363 0.369 
   1.20 0.355 0.366 0.377 0.387 0.397 0.406 0.415 0.423 
   1.25 0.397 0.410 0.423 0.435 0.446 0.457 0.467 0.477 
   1.30 0.438 0.454 0.468 0.481 0.494 0.507 0.519 0.530 
   1.35 0.480 0.496 0.512 0.527 0.542 0.555 0.568 0.581 
   1.40 0.520 0.538 0.555 0.572 0.587 0.602 0.616 0.629 
   1.45 0.559 0.578 0.597 0.614 0.630 0.646 0.660 0.674 
   1.50 0.596 0.617 0.636 0.654 0.671 0.687 0.702 0.716 
   1.55 0.632 0.653 0.673 0.691 0.709 0.725 0.740 0.754 
   1.60 0.666 0.687 0.707 0.726 0.743 0.759 0.774 0.788 
   1.65 0.697 0.719 0.739 0.758 0.775 0.791 0.805 0.819 
   1.70 0.727 0.749 0.769 0.787 0.804 0.819 0.833 0.846 
   1.75 0.754 0.776 0.796 0.813 0.829 0.844 0.857 0.869 
   1.80 0.780 0.801 0.820 0.837 0.852 0.866 0.879 0.890 
   1.85 0.803 0.823 0.842 0.858 0.873 0.886 0.897 0.908 
   1.90 0.824 0.844 0.861 0.877 0.891 0.903 0.913 0.923 
   1.95 0.843 0.862 0.879 0.894 0.906 0.918 0.927 0.936 
   2.00 0.861 0.879 0.895 0.908 0.920 0.930 0.939 0.947 
   2.05 0.877 0.894 0.908 0.921 0.932 0.941 0.949 0.956 
   2.10 0.891 0.907 0.921 0.932 0.942 0.951 0.958 0.964 
   2.15 0.903 0.919 0.931 0.942 0.951 0.959 0.965 0.970 
   2.20 0.915 0.929 0.941 0.950 0.959 0.965 0.971 0.976 
   2.25 0.925 0.938 0.949 0.958 0.965 0.971 0.976 0.980 
   2.30 0.934 0.946 0.956 0.964 0.970 0.976 0.980 0.984 
   2.35 0.942 0.953 0.962 0.969 0.975 0.980 0.984 0.987 
   2.40 0.949 0.959 0.967 0.974 0.979 0.983 0.987 0.989 
   2.45 0.955 0.965 0.972 0.978 0.982 0.986 0.989 0.991 
   2.50 0.961 0.969 0.976 0.981 0.985 0.989 0.991 0.993 
   2.55 0.966 0.973 0.979 0.984 0.988 0.990 0.993 0.994 
   2.60 0.970 0.977 0.982 0.987 0.990 0.992 0.994 0.995 
   2.65 0.974 0.980 0.985 0.989 0.991 0.993 0.995 0.996 
   2.70 0.977 0.983 0.987 0.990 0.993 0.995 0.996 0.997 
   2.75 0.980 0.985 0.989 0.992 0.994 0.996 0.997 0.998 
   2.80 0.982 0.987 0.991 0.993 0.995 0.996 0.997 0.998 
   2.85 0.984 0.989 0.992 0.994 0.996 0.997 0.998 0.998 
   2.90 0.986 0.990 0.993 0.995 0.996 0.997 0.998 0.999 
   2.95 0.988 0.992 0.994 0.996 0.997 0.998 0.999 0.999 
   3.00 0.990 0.993 0.995 0.996 0.998 0.998 0.999 0.999 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        21          22          23           24         25           26            27           28 
 
 
   1.00 0.219 0.221 0.223 0.224 0.225 0.227 0.228 0.229 
   1.05 0.269 0.272 0.275 0.278 0.280 0.283 0.286 0.288 
   1.10 0.321 0.326 0.331 0.335 0.339 0.343 0.347 0.351 
   1.15 0.376 0.382 0.388 0.394 0.400 0.406 0.411 0.417 
   1.20 0.432 0.440 0.447 0.455 0.462 0.469 0.476 0.482 
   1.25 0.487 0.496 0.505 0.514 0.523 0.531 0.539 0.547 
   1.30 0.541 0.552 0.562 0.572 0.581 0.590 0.599 0.608 
   1.35 0.593 0.605 0.616 0.626 0.637 0.646 0.656 0.665 
   1.40 0.642 0.654 0.666 0.677 0.688 0.698 0.708 0.717 
   1.45 0.688 0.700 0.712 0.723 0.734 0.745 0.755 0.764 
   1.50 0.729 0.742 0.754 0.765 0.776 0.786 0.796 0.805 
   1.55 0.767 0.780 0.792 0.803 0.813 0.823 0.832 0.841 
   1.60 0.801 0.813 0.825 0.835 0.845 0.854 0.863 0.871 
   1.65 0.831 0.843 0.854 0.863 0.873 0.881 0.889 0.897 
   1.70 0.858 0.868 0.878 0.888 0.896 0.904 0.911 0.918 
   1.75 0.881 0.891 0.900 0.908 0.916 0.923 0.929 0.935 
   1.80 0.900 0.910 0.918 0.925 0.932 0.939 0.944 0.949 
   1.85 0.917 0.926 0.933 0.940 0.946 0.951 0.956 0.961 
   1.90 0.931 0.939 0.946 0.952 0.957 0.962 0.966 0.970 
   1.95 0.944 0.950 0.956 0.961 0.966 0.970 0.973 0.977 
   2.00 0.954 0.960 0.965 0.969 0.973 0.977 0.980 0.982 
   2.05 0.962 0.967 0.972 0.976 0.979 0.982 0.984 0.986 
   2.10 0.969 0.974 0.977 0.981 0.984 0.986 0.988 0.990 
   2.15 0.975 0.979 0.982 0.985 0.987 0.989 0.991 0.992 
   2.20 0.980 0.983 0.986 0.988 0.990 0.992 0.993 0.994 
   2.25 0.984 0.986 0.989 0.991 0.992 0.994 0.995 0.996 
   2.30 0.987 0.989 0.991 0.993 0.994 0.995 0.996 0.997 
   2.35 0.989 0.991 0.993 0.994 0.995 0.996 0.997 0.998 
   2.40 0.991 0.993 0.995 0.996 0.996 0.997 0.998 0.998 
   2.45 0.993 0.995 0.996 0.997 0.997 0.998 0.998 0.999 
   2.50 0.995 0.996 0.997 0.997 0.998 0.998 0.999 0.999 
   2.55 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999 
   2.60 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 
   2.65 0.997 0.998 0.998 0.999 0.999 0.999 0.999 1.000 
   2.70 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 
   2.75 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.80 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.85 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.90 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-7 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        29          30          31           32          33           34           35           36 
 
 
   1.00 0.231 0.232 0.233 0.234 0.235 0.236 0.236 0.237 
   1.05 0.291 0.293 0.295 0.297 0.300 0.302 0.304 0.306 
   1.10 0.355 0.359 0.362 0.366 0.369 0.373 0.376 0.379 
   1.15 0.422 0.427 0.432 0.437 0.441 0.446 0.450 0.455 
   1.20 0.489 0.495 0.501 0.507 0.513 0.519 0.525 0.530 
   1.25 0.554 0.562 0.569 0.576 0.582 0.589 0.596 0.602 
   1.30 0.616 0.624 0.632 0.640 0.648 0.655 0.662 0.669 
   1.35 0.674 0.683 0.691 0.699 0.707 0.715 0.722 0.729 
   1.40 0.727 0.735 0.744 0.752 0.760 0.767 0.775 0.782 
   1.45 0.773 0.782 0.790 0.798 0.806 0.813 0.820 0.827 
   1.50 0.814 0.822 0.830 0.838 0.845 0.852 0.859 0.865 
   1.55 0.849 0.857 0.864 0.871 0.878 0.884 0.890 0.896 
   1.60 0.879 0.886 0.893 0.899 0.905 0.911 0.916 0.921 
   1.65 0.904 0.910 0.916 0.922 0.927 0.932 0.936 0.941 
   1.70 0.924 0.930 0.935 0.940 0.944 0.948 0.952 0.956 
   1.75 0.941 0.946 0.950 0.954 0.958 0.961 0.965 0.968 
   1.80 0.954 0.958 0.962 0.965 0.969 0.971 0.974 0.976 
   1.85 0.965 0.968 0.971 0.974 0.977 0.979 0.981 0.983 
   1.90 0.973 0.976 0.978 0.981 0.983 0.985 0.986 0.988 
   1.95 0.979 0.982 0.984 0.986 0.987 0.989 0.990 0.991 
   2.00 0.984 0.986 0.988 0.990 0.991 0.992 0.993 0.994 
   2.05 0.988 0.990 0.991 0.992 0.993 0.994 0.995 0.996 
   2.10 0.991 0.992 0.994 0.994 0.995 0.996 0.997 0.997 
   2.15 0.993 0.994 0.995 0.996 0.997 0.997 0.998 0.998 
   2.20 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.999 
   2.25 0.996 0.997 0.998 0.998 0.998 0.999 0.999 0.999 
   2.30 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   2.35 0.998 0.998 0.999 0.999 0.999 0.999 0.999 1.000 
   2.40 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.45 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.50 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-8 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        37          38         39           40          41           42            43          44 
 
 
   1.00 0.238 0.239 0.240 0.240 0.241 0.242 0.242 0.243 
   1.05 0.308 0.309 0.311 0.313 0.315 0.317 0.318 0.320 
   1.10 0.382 0.385 0.388 0.391 0.394 0.397 0.400 0.403 
   1.15 0.459 0.464 0.468 0.472 0.476 0.480 0.484 0.488 
   1.20 0.535 0.541 0.546 0.551 0.556 0.561 0.566 0.570 
   1.25 0.608 0.614 0.620 0.626 0.632 0.637 0.643 0.648 
   1.30 0.676 0.682 0.688 0.695 0.701 0.707 0.712 0.718 
   1.35 0.736 0.743 0.749 0.755 0.762 0.768 0.773 0.779 
   1.40 0.789 0.795 0.802 0.808 0.814 0.819 0.825 0.830 
   1.45 0.834 0.840 0.846 0.851 0.857 0.862 0.867 0.872 
   1.50 0.871 0.877 0.882 0.887 0.892 0.897 0.901 0.906 
   1.55 0.901 0.906 0.911 0.916 0.920 0.924 0.928 0.931 
   1.60 0.925 0.930 0.934 0.938 0.941 0.945 0.948 0.951 
   1.65 0.944 0.948 0.952 0.955 0.958 0.961 0.963 0.966 
   1.70 0.959 0.962 0.965 0.968 0.970 0.972 0.974 0.976 
   1.75 0.970 0.973 0.975 0.977 0.979 0.981 0.982 0.984 
   1.80 0.979 0.980 0.982 0.984 0.985 0.987 0.988 0.989 
   1.85 0.985 0.986 0.988 0.989 0.990 0.991 0.992 0.993 
   1.90 0.989 0.990 0.991 0.992 0.993 0.994 0.995 0.995 
   1.95 0.992 0.993 0.994 0.995 0.995 0.996 0.996 0.997 
   2.00 0.995 0.995 0.996 0.996 0.997 0.997 0.998 0.998 
   2.05 0.996 0.997 0.997 0.998 0.998 0.998 0.998 0.999 
   2.10 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999 
   2.15 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   2.20 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.25 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.30 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-9 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        45          46          47           48         49           50            51           52 
 
 
   1.00 0.244 0.244 0.245 0.245 0.246 0.246 0.247 0.247 
   1.05 0.322 0.323 0.325 0.326 0.328 0.329 0.331 0.332 
   1.10 0.406 0.408 0.411 0.414 0.416 0.419 0.421 0.424 
   1.15 0.491 0.495 0.499 0.502 0.506 0.510 0.513 0.516 
   1.20 0.575 0.580 0.584 0.589 0.593 0.597 0.602 0.606 
   1.25 0.653 0.659 0.664 0.669 0.673 0.678 0.683 0.687 
   1.30 0.724 0.729 0.734 0.739 0.744 0.749 0.754 0.759 
   1.35 0.784 0.790 0.795 0.800 0.805 0.810 0.814 0.819 
   1.40 0.835 0.841 0.845 0.850 0.855 0.859 0.863 0.867 
   1.45 0.877 0.881 0.886 0.890 0.894 0.898 0.902 0.905 
   1.50 0.910 0.914 0.917 0.921 0.924 0.928 0.931 0.934 
   1.55 0.935 0.938 0.941 0.944 0.947 0.950 0.952 0.955 
   1.60 0.954 0.957 0.959 0.961 0.964 0.966 0.968 0.970 
   1.65 0.968 0.970 0.972 0.974 0.975 0.977 0.979 0.980 
   1.70 0.978 0.980 0.981 0.982 0.984 0.985 0.986 0.987 
   1.75 0.985 0.986 0.987 0.988 0.989 0.990 0.991 0.992 
   1.80 0.990 0.991 0.992 0.992 0.993 0.994 0.994 0.995 
   1.85 0.993 0.994 0.995 0.995 0.996 0.996 0.996 0.997 
   1.90 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 
   1.95 0.997 0.998 0.998 0.998 0.998 0.998 0.999 0.999 
   2.00 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   2.05 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.10 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-10 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        53         54          55           56          57           58           59           60 
 
 
   1.00 0.248 0.248 0.249 0.249 0.250 0.250 0.250 0.251 
   1.05 0.334 0.335 0.336 0.338 0.339 0.340 0.342 0.343 
   1.10 0.426 0.428 0.431 0.433 0.435 0.438 0.440 0.442 
   1.15 0.520 0.523 0.526 0.530 0.533 0.536 0.539 0.542 
   1.20 0.610 0.614 0.618 0.622 0.626 0.629 0.633 0.637 
   1.25 0.692 0.696 0.701 0.705 0.709 0.713 0.717 0.721 
   1.30 0.764 0.768 0.772 0.777 0.781 0.785 0.789 0.793 
   1.35 0.823 0.828 0.832 0.836 0.840 0.844 0.847 0.851 
   1.40 0.871 0.875 0.879 0.883 0.886 0.889 0.893 0.896 
   1.45 0.909 0.912 0.915 0.918 0.921 0.924 0.927 0.929 
   1.50 0.937 0.939 0.942 0.944 0.947 0.949 0.951 0.953 
   1.55 0.957 0.959 0.961 0.963 0.965 0.967 0.968 0.970 
   1.60 0.971 0.973 0.975 0.976 0.977 0.979 0.980 0.981 
   1.65 0.981 0.983 0.984 0.985 0.986 0.987 0.988 0.988 
   1.70 0.988 0.989 0.990 0.990 0.991 0.992 0.992 0.993 
   1.75 0.992 0.993 0.994 0.994 0.995 0.995 0.995 0.996 
   1.80 0.995 0.996 0.996 0.996 0.997 0.997 0.997 0.998 
   1.85 0.997 0.997 0.998 0.998 0.998 0.998 0.998 0.999 
   1.90 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   1.95 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.00 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-11 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        61          62         63           64          65            66           67           68 
 
 
   1.00 0.251 0.252 0.252 0.252 0.253 0.253 0.253 0.254 
   1.05 0.344 0.346 0.347 0.348 0.349 0.350 0.352 0.353 
   1.10 0.445 0.447 0.449 0.451 0.453 0.455 0.457 0.459 
   1.15 0.545 0.548 0.551 0.554 0.557 0.560 0.563 0.566 
   1.20 0.640 0.644 0.648 0.651 0.655 0.658 0.661 0.665 
   1.25 0.725 0.729 0.733 0.737 0.740 0.744 0.747 0.751 
   1.30 0.797 0.801 0.804 0.808 0.812 0.815 0.819 0.822 
   1.35 0.855 0.858 0.862 0.865 0.868 0.871 0.874 0.877 
   1.40 0.899 0.902 0.905 0.908 0.911 0.913 0.916 0.918 
   1.45 0.932 0.934 0.937 0.939 0.941 0.943 0.945 0.947 
   1.50 0.955 0.957 0.959 0.961 0.962 0.964 0.966 0.967 
   1.55 0.971 0.973 0.974 0.976 0.977 0.978 0.979 0.980 
   1.60 0.982 0.983 0.984 0.985 0.986 0.987 0.987 0.988 
   1.65 0.989 0.990 0.990 0.991 0.992 0.992 0.993 0.993 
   1.70 0.993 0.994 0.994 0.995 0.995 0.996 0.996 0.996 
   1.75 0.996 0.997 0.997 0.997 0.997 0.998 0.998 0.998 
   1.80 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 
   1.85 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.90 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-12 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        69          70         71            72         73           74           75           76 
 
 
   1.00 0.254 0.254 0.255 0.255 0.255 0.256 0.256 0.256 
   1.05 0.354 0.355 0.356 0.357 0.358 0.359 0.361 0.362 
   1.10 0.461 0.463 0.465 0.467 0.469 0.471 0.473 0.475 
   1.15 0.569 0.571 0.574 0.577 0.579 0.582 0.585 0.587 
   1.20 0.668 0.671 0.674 0.678 0.681 0.684 0.687 0.690 
   1.25 0.754 0.758 0.761 0.764 0.768 0.771 0.774 0.777 
   1.30 0.825 0.828 0.832 0.835 0.838 0.841 0.844 0.846 
   1.35 0.880 0.883 0.886 0.888 0.891 0.894 0.896 0.899 
   1.40 0.921 0.923 0.925 0.927 0.930 0.932 0.934 0.936 
   1.45 0.949 0.951 0.953 0.954 0.956 0.958 0.959 0.961 
   1.50 0.968 0.970 0.971 0.972 0.974 0.975 0.976 0.977 
   1.55 0.981 0.982 0.983 0.984 0.985 0.985 0.986 0.987 
   1.60 0.989 0.990 0.990 0.991 0.991 0.992 0.992 0.993 
   1.65 0.994 0.994 0.994 0.995 0.995 0.995 0.996 0.996 
   1.70 0.996 0.997 0.997 0.997 0.997 0.998 0.998 0.998 
   1.75 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   1.80 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.85 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-13 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        77          78          79          80          81           82           83            84 
 
 
   1.00 0.256 0.257 0.257 0.257 0.257 0.258 0.258 0.258 
   1.05 0.363 0.364 0.365 0.366 0.367 0.368 0.369 0.370 
   1.10 0.477 0.479 0.481 0.483 0.485 0.486 0.488 0.490 
   1.15 0.590 0.593 0.595 0.598 0.600 0.602 0.605 0.607 
   1.20 0.693 0.696 0.699 0.702 0.704 0.707 0.710 0.713 
   1.25 0.780 0.783 0.786 0.789 0.792 0.795 0.797 0.800 
   1.30 0.849 0.852 0.855 0.857 0.860 0.862 0.865 0.867 
   1.35 0.901 0.903 0.906 0.908 0.910 0.912 0.914 0.916 
   1.40 0.937 0.939 0.941 0.943 0.944 0.946 0.948 0.949 
   1.45 0.962 0.963 0.965 0.966 0.967 0.968 0.969 0.971 
   1.50 0.978 0.979 0.980 0.980 0.981 0.982 0.983 0.984 
   1.55 0.987 0.988 0.989 0.989 0.990 0.990 0.991 0.991 
   1.60 0.993 0.993 0.994 0.994 0.994 0.995 0.995 0.995 
   1.65 0.996 0.997 0.997 0.997 0.997 0.997 0.998 0.998 
   1.70 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   1.75 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.80 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-14 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        85          86          87           88         89           90           91           92 
 
 
   1.00 0.258 0.259 0.259 0.259 0.259 0.260 0.260 0.260 
   1.05 0.371 0.372 0.373 0.374 0.375 0.376 0.377 0.378 
   1.10 0.492 0.493 0.495 0.497 0.499 0.500 0.502 0.504 
   1.15 0.610 0.612 0.614 0.617 0.619 0.621 0.624 0.626 
   1.20 0.715 0.718 0.721 0.723 0.726 0.728 0.731 0.734 
   1.25 0.803 0.805 0.808 0.811 0.813 0.816 0.818 0.820 
   1.30 0.870 0.872 0.874 0.877 0.879 0.881 0.883 0.885 
   1.35 0.918 0.920 0.922 0.924 0.925 0.927 0.929 0.931 
   1.40 0.951 0.952 0.954 0.955 0.956 0.958 0.959 0.960 
   1.45 0.972 0.973 0.974 0.975 0.975 0.976 0.977 0.978 
   1.50 0.984 0.985 0.986 0.986 0.987 0.987 0.988 0.988 
   1.55 0.992 0.992 0.992 0.993 0.993 0.994 0.994 0.994 
   1.60 0.996 0.996 0.996 0.996 0.997 0.997 0.997 0.997 
   1.65 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 
   1.70 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.75 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-15 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 70 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        93          94          95          96           97           98          99          100 
 
 
   1.00 0.260 0.260 0.261 0.261 0.261 0.261 0.261 0.262 
   1.05 0.379 0.379 0.380 0.381 0.382 0.383 0.384 0.385 
   1.10 0.506 0.507 0.509 0.510 0.512 0.514 0.515 0.517 
   1.15 0.628 0.630 0.633 0.635 0.637 0.639 0.641 0.643 
   1.20 0.736 0.738 0.741 0.743 0.746 0.748 0.750 0.753 
   1.25 0.823 0.825 0.827 0.830 0.832 0.834 0.836 0.839 
   1.30 0.887 0.889 0.891 0.893 0.895 0.897 0.899 0.901 
   1.35 0.932 0.934 0.935 0.937 0.938 0.940 0.941 0.942 
   1.40 0.961 0.962 0.963 0.964 0.965 0.966 0.967 0.968 
   1.45 0.979 0.979 0.980 0.981 0.982 0.982 0.983 0.984 
   1.50 0.989 0.989 0.990 0.990 0.991 0.991 0.991 0.992 
   1.55 0.994 0.995 0.995 0.995 0.995 0.996 0.996 0.996 
   1.60 0.997 0.997 0.998 0.998 0.998 0.998 0.998 0.998 
   1.65 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.70 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   1.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-16 

 
 
 

TABLE FOR 
80 PERCENT CONFIDENCE 



 

B-17 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR          5           6            7             8            9           10           11            12 
 
 
   1.00 0.079 0.093 0.102 0.109 0.114 0.118 0.121 0.124 
   1.05 0.092 0.108 0.119 0.128 0.135 0.140 0.145 0.150 
   1.10 0.105 0.124 0.138 0.148 0.157 0.165 0.172 0.178 
   1.15 0.120 0.141 0.157 0.170 0.181 0.191 0.200 0.208 
   1.20 0.135 0.159 0.178 0.193 0.207 0.219 0.230 0.240 
   1.25 0.151 0.178 0.200 0.218 0.234 0.248 0.261 0.274 
   1.30 0.168 0.198 0.222 0.243 0.261 0.278 0.294 0.309 
   1.35 0.185 0.218 0.245 0.269 0.290 0.309 0.327 0.344 
   1.40 0.203 0.239 0.269 0.295 0.319 0.341 0.361 0.381 
   1.45 0.221 0.260 0.293 0.322 0.348 0.373 0.395 0.417 
   1.50 0.240 0.282 0.318 0.349 0.378 0.405 0.429 0.453 
   1.55 0.259 0.304 0.342 0.377 0.408 0.436 0.463 0.488 
   1.60 0.278 0.326 0.367 0.404 0.437 0.468 0.496 0.523 
   1.65 0.297 0.348 0.392 0.431 0.466 0.499 0.529 0.556 
   1.70 0.316 0.370 0.417 0.458 0.495 0.529 0.560 0.589 
   1.75 0.336 0.392 0.441 0.484 0.523 0.558 0.590 0.620 
   1.80 0.355 0.414 0.465 0.510 0.550 0.586 0.620 0.650 
   1.85 0.374 0.436 0.488 0.535 0.576 0.614 0.647 0.678 
   1.90 0.393 0.457 0.511 0.559 0.602 0.640 0.674 0.705 
   1.95 0.412 0.478 0.534 0.583 0.626 0.665 0.699 0.730 
   2.00 0.431 0.498 0.556 0.606 0.650 0.688 0.723 0.753 
   2.05 0.449 0.519 0.577 0.628 0.672 0.711 0.745 0.775 
   2.10 0.468 0.538 0.598 0.649 0.694 0.732 0.766 0.796 
   2.15 0.485 0.557 0.618 0.669 0.714 0.752 0.786 0.814 
   2.20 0.503 0.576 0.637 0.689 0.733 0.771 0.804 0.832 
   2.25 0.520 0.594 0.656 0.708 0.751 0.789 0.821 0.848 
   2.30 0.537 0.612 0.674 0.725 0.769 0.805 0.836 0.862 
   2.35 0.553 0.629 0.691 0.742 0.785 0.821 0.851 0.876 
   2.40 0.569 0.645 0.707 0.758 0.800 0.835 0.864 0.888 
   2.45 0.585 0.661 0.723 0.773 0.814 0.848 0.876 0.899 
   2.50 0.600 0.676 0.738 0.787 0.828 0.861 0.887 0.909 
   2.55 0.614 0.691 0.752 0.801 0.840 0.872 0.898 0.918 
   2.60 0.629 0.705 0.765 0.814 0.852 0.883 0.907 0.926 
   2.65 0.642 0.718 0.778 0.826 0.863 0.892 0.916 0.934 
   2.70 0.656 0.731 0.791 0.837 0.873 0.901 0.923 0.941 
   2.75 0.669 0.744 0.802 0.847 0.882 0.910 0.931 0.947 
   2.80 0.681 0.756 0.813 0.857 0.891 0.917 0.937 0.952 
   2.85 0.693 0.767 0.824 0.867 0.899 0.924 0.943 0.957 
   2.90 0.705 0.778 0.834 0.875 0.907 0.931 0.948 0.962 
   2.95 0.716 0.789 0.843 0.884 0.914 0.936 0.953 0.966 
   3.00 0.727 0.799 0.852 0.891 0.920 0.942 0.958 0.969 
 



 

B-18 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUTREMEN@- 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        13          14          15           16         17            18           19           20 
 
 
   1.00 0.127 0.129 0.131 0.133 0.135 0.136 0.138 0.139 
   1.05 0.154 0.158 0.161 0.164 0.168 0.171 0.173 0.176 
   1.10 0.184 0.189 0.194 0.199 0.204 0.208 0.213 0.217 
   1.15 0.216 0.223 0.230 0.237 0.243 0.250 0.255 0.261 
   1.20 0.250 0.260 0.268 0.277 0.285 0.293 0.301 0.308 
   1.25 0.286 0.297 0.308 0.319 0.329 0.339 0.348 0.357 
   1.30 0.323 0.336 0.349 0.362 0.374 0.386 0.397 0.408 
   1.35 0.361 0.376 0.391 0.406 0.419 0.433 0.446 0.458 
   1.40 0.399 0.416 0.433 0.449 0.465 0.479 0.494 0.508 
   1.45 0.437 0.456 0.475 0.492 0.509 0.525 0.541 0.556 
   1.50 0.475 0.496 0.516 0.534 0.553 0.570 0.586 0.602 
   1.55 0.512 0.534 0.555 0.575 0.594 0.612 0.630 0.646 
   1.60 0.548 0.571 0.593 0.614 0.634 0.653 0.670 0.687 
   1.65 0.583 0.607 0.630 0.651 0.671 0.690 0.708 0.725 
   1.70 0.616 0.641 0.664 0.686 0.706 0.725 0.743 0.760 
   1.75 0.648 0.673 0.697 0.719 0.739 0.757 0.775 0.791 
   1.80 0.678 0.703 0.727 0.749 0.769 0.787 0.804 0.819 
   1.85 0.706 0.732 0.755 0.776 0.796 0.813 0.830 0.844 
   1.90 0.733 0.758 0.781 0.802 0.820 0.837 0.853 0.867 
   1.95 0.758 0.782 0.805 0.825 0.843 0.859 0.873 0.886 
   2.00 0.781 0.805 0.826 0.845 0.863 0.878 0.891 0.903 
   2.05 0.802 0.825 0.846 0.864 0.880 0.895 0.907 0.918 
   2.10 0.821 0.844 0.864 0.881 0.896 0.909 0.921 0.931 
   2.15 0.839 0.861 0.880 0.896 0.910 0.922 0.933 0.942 
   2.20 0.856 0.876 0.894 0.909 0.922 0.933 0.943 0.951 
   2.25 0.871 0.890 0.907 0.921 0.933 0.943 0.952 0.959 
   2.30 0.884 0.903 0.918 0.931 0.942 0.952 0.959 0.966 
   2.35 0.896 0.914 0.928 0.940 0.951 0.959 0.966 0.972 
   2.40 0.907 0.924 0.937 0.948 0.958 0.965 0.971 0.977 
   2.45 0.917 0.933 0.945 0.955 0.964 0.971 0.976 0.981 
   2.50 0.926 0.941 0.952 0.961 0.969 0.975 0.980 0.984 
   2.55 0.935 0.948 0.958 0.967 0.974 0.979 0.983 0.987 
   2.60 0.942 0.954 0.964 0.971 0.977 0.982 0.986 0.989 
   2.65 0.948 0.960 0.968 0.975 0.981 0.985 0.988 0.991 
   2.70 0.954 0.964 0.973 0.979 0.984 0.987 0.990 0.993 
   2.75 0.959 0.969 0.976 0.982 0.986 0.989 0.992 0.994 
   2.80 0.964 0.973 0.979 0.984 0.988 0.991 0.993 0.995 
   2.85 0.968 0.976 0.982 0.987 0.990 0.993 0.994 0.996 
   2.90 0.972 0.979 0.984 0.988 0.991 0.994 0.995 0.997 
   2.95 0.975 0.982 0.986 0.990 0.993 0.995 0.996 0.997 
   3.00 0.978 0.984 0.988 0.992 0.994 0.996 0.997 0.998 
 



 

B-19 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        21          22          23          24          25            26          27            28 
 
 
   1.00 0.141 0.142 0.143 0.144 0.145 0.146 0.147 0.148 
   1.05 0.178 0.181 0.183 0.185 0.187 0.190 0.192 0.193 
   1.10 0.221 0.225 0.228 0.232 0.235 0.239 0.242 0.245 
   1.15 0.267 0.272 0.277 0.282 0.287 0.292 0.297 0.302 
   1.20 0.316 0.323 0.330 0.336 0.343 0.349 0.355 0.361 
   1.25 0.366 0.375 0.384 0.392 0.400 0.408 0.416 0.423 
   1.30 0.418 0.429 0.439 0.448 0.458 0.467 0.476 0.485 
   1.35 0.470 0.482 0.493 0.504 0.515 0.525 0.535 0.545 
   1.40 0.521 0.534 0.546 0.558 0.570 0.582 0.593 0.603 
   1.45 0.570 0.584 0.598 0.610 0.623 0.635 0.646 0.658 
   1.50 0.617 0.632 0.646 0.659 0.672 0.684 0.696 0.708 
   1.55 0.662 0.677 0.691 0.704 0.717 0.730 0.741 0.753 
   1.60 0.703 0.718 0.732 0.746 0.758 0.770 0.782 0.793 
   1.65 0.741 0.755 0.769 0.783 0.795 0.807 0.818 0.828 
   1.70 0.775 0.789 0.803 0.816 0.828 0.839 0.849 0.859 
   1.75 0.806 0.820 0.833 0.845 0.856 0.866 0.876 0.885 
   1.80 0.834 0.847 0.859 0.870 0.880 0.890 0.899 0.907 
   1.85 0.858 0.870 0.882 0.892 0.901 0.910 0.918 0.925 
   1.90 0.879 0.891 0.901 0.911 0.919 0.927 0.934 0.940 
   1.95 0.898 0.909 0.918 0.926 0.934 0.941 0.947 0.953 
   2.00 0.914 0.924 0.932 0.940 0.947 0.953 0.958 0.963 
   2.05 0.928 0.937 0.944 0.951 0.957 0.962 0.967 0.971 
   2.10 0.940 0.948 0.954 0.960 0.965 0.970 0.974 0.977 
   2.15 0.950 0.957 0.963 0.968 0.972 0.976 0.979 0.982 
   2.20 0.958 0.964 0.970 0.974 0.978 0.981 0.984 0.986 
   2.25 0.966 0.971 0.975 0.979 0.982 0.985 0.987 0.989 
   2.30 0.972 0.976 0.980 0.983 0.986 0.988 0.990 0.992 
   2.35 0.977 0.981 0.984 0.987 0.989 0.991 0.992 0.994 
   2.40 0.981 0.984 0.987 0.989 0.991 0.993 0.994 0.995 
   2.45 0.984 0.987 0.990 0.992 0.993 0.994 0.996 0.996 
   2.50 0.987 0.990 0.992 0.993 0.995 0.996 0.997 0.997 
   2.55 0.989 0.992 0.993 0.995 0.996 0.997 0.997 0.998 
   2.60 0.991 0.993 0.995 0.996 0.997 0.997 0.998 0.998 
   2.65 0.993 0.995 0.996 0.997 0.997 0.998 0.998 0.999 
   2.70 0.994 0.996 0.997 0.997 0.998 0.998 0.999 0.999 
   2.75 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999 
   2.80 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 
   2.85 0.997 0.998 0.998 0.999 0.999 0.999 0.999 1.000 
   2.90 0.997 0.998 0.999 0.999 0.999 0.999 1.000 1.000 
   2.95 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   3.00 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
 



 

B-20 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        29          30          31           32         33           34            35           36 
 
 
   1.00 0.149 0.149 0.150 0.151 0.151 0.152 0.153 0.153 
   1.05 0.195 0.197 0.199 0.201 0.202 0.204 0.206 0.207 
   1.10 0.248 0.251 0.254 0.257 0.260 0.263 0.266 0.269 
   1.15 0.306 0.311 0.315 0.319 0.324 0.328 0.332 0.336 
   1.20 0.367 0.373 0.379 0.385 0.390 0.396 0.401 0.407 
   1.25 0.430 0.438 0.445 0.452 0.459 0.465 0.472 0.478 
   1.30 0.494 0.502 0.510 0.518 0.526 0.534 0.542 0.549 
   1.35 0.555 0.564 0.574 0.582 0.591 0.600 0.608 0.616 
   1.40 0.614 0.624 0.633 0.643 0.652 0.661 0.670 0.678 
   1.45 0.668 0.679 0.689 0.699 0.708 0.717 0.726 0.735 
   1.50 0.718 0.729 0.739 0.749 0.758 0.767 0.776 0.784 
   1.55 0.764 0.774 0.784 0.793 0.802 0.811 0.819 0.827 
   1.60 0.803 0.813 0.823 0.832 0.840 0.848 0.856 0.863 
   1.65 0.838 0.847 0.856 0.864 0.872 0.879 0.886 0.893 
   1.70 0.868 0.876 0.884 0.892 0.899 0.905 0.911 0.917 
   1.75 0.893 0.901 0.908 0.915 0.921 0.926 0.932 0.937 
   1.80 0.914 0.921 0.927 0.933 0.938 0.943 0.948 0.952 
   1.85 0.932 0.938 0.943 0.948 0.953 0.957 0.961 0.964 
   1.90 0.946 0.951 0.956 0.960 0.964 0.967 0.971 0.973 
   1.95 0.957 0.962 0.966 0.969 0.973 0.976 0.978 0.980 
   2.00 0.967 0.971 0.974 0.977 0.979 0.982 0.984 0.986 
   2.05 0.974 0.977 0.980 0.983 0.985 0.987 0.988 0.990 
   2.10 0.980 0.983 0.985 0.987 0.989 0.990 0.991 0.993 
   2.15 0.985 0.987 0.989 0.990 0.992 0.993 0.994 0.995 
   2.20 0.988 0.990 0.991 0.993 0.994 0.995 0.996 0.996 
   2.25 0.991 0.992 0.994 0.995 0.995 0.996 0.997 0.997 
   2.30 0.993 0.994 0.995 0.996 0.997 0.997 0.998 0.998 
   2.35 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.999 
   2.40 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999 
   2.45 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999 
   2.50 0.998 0.998 0.999 0.999 0.999 0.999 0.999 1.000 
   2.55 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.60 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.65 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.70 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-21 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        37          38         39           40          41           42           43           44 
 
 
   1.00 0.154 0.154 0.155 0.156 0.156 0.157 0.157 0.157 
   1.05 0.209 0.210 0.212 0.213 0.214 0.216 0.217 0.218 
   1.10 0.271 0.274 0.276 0.279 0.281 0.284 0.286 0.289 
   1.15 0.340 0.344 0.347 0.351 0.355 0.359 0.362 0.366 
   1.20 0.412 0.417 0.422 0.427 0.432 0.437 0.441 0.446 
   1.25 0.485 0.491 0.497 0.503 0.509 0.515 0.521 0.526 
   1.30 0.556 0.563 0.570 0.577 0.584 0.591 0.597 0.604 
   1.35 0.624 0.632 0.639 0.647 0.654 0.661 0.668 0.675 
   1.40 0.687 0.695 0.703 0.710 0.718 0.725 0.732 0.739 
   1.45 0.743 0.751 0.759 0.766 0.773 0.781 0.787 0.794 
   1.50 0.792 0.800 0.807 0.814 0.821 0.828 0.834 0.841 
   1.55 0.834 0.842 0.848 0.855 0.861 0.867 0.873 0.879 
   1.60 0.870 0.876 0.883 0.888 0.894 0.899 0.905 0.909 
   1.65 0.899 0.905 0.910 0.915 0.920 0.925 0.929 0.933 
   1.70 0.923 0.928 0.932 0.937 0.941 0.945 0.948 0.952 
   1.75 0.941 0.946 0.949 0.953 0.957 0.960 0.963 0.965 
   1.80 0.956 0.960 0.963 0.966 0.969 0.971 0.973 0.976 
   1.85 0.967 0.970 0.973 0.975 0.977 0.979 0.981 0.983 
   1.90 0.976 0.978 0.980 0.982 0.984 0.986 0.987 0.988 
   1.95 0.982 0.984 0.986 0.987 0.989 0.990 0.991 0.992 
   2.00 0.987 0.989 0.990 0.991 0.992 0.993 0.994 0.995 
   2.05 0.991 0.992 0.993 0.994 0.995 0.995 0.996 0.996 
   2.10 0.994 0.994 0.995 0.996 0.996 0.997 0.997 0.998 
   2.15 0.995 0.996 0.997 0.997 0.997 0.998 0.998 0.998 
   2.20 0.997 0.997 0.998 0.998 0.998 0.999 0.999 0.999 
   2.25 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   2.30 0.998 0.999 0.999 0.999 0.999 0.999 0.999 1.000 
   2.35 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.40 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.45 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-22 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        45          46         47            48         49           50           51            52 
 
 
   1.00 0.158 0.158 0.159 0.159 0.160 0.160 0.160 0.161 
   1.05 0.220 0.221 0.222 0.224 0.225 0.226 0.227 0.228 
   1.10 0.291 0.294 0.296 0.298 0.300 0.303 0.305 0.307 
   1.15 0.369 0.373 0.376 0.380 0.383 0.386 0.390 0.393 
   1.20 0.451 0.455 0.460 0.464 0.469 0.473 0.478 0.482 
   1.25 0.532 0.538 0.543 0.548 0.554 0.559 0.564 0.569 
   1.30 0.610 0.616 0.622 0.628 0.634 0.640 0.645 0.651 
   1.35 0.681 0.688 0.694 0.701 0.707 0.713 0.718 0.724 
   1.40 0.745 0.752 0.758 0.764 0.770 0.776 0.782 0.787 
   1.45 0.800 0.807 0.813 0.818 0.824 0.829 0.835 0.840 
   1.50 0.846 0.852 0.858 0.863 0.868 0.873 0.878 0.882 
   1.55 0.884 0.889 0.894 0.899 0.903 0.907 0.911 0.915 
   1.60 0.914 0.918 0.922 0.926 0.930 0.934 0.937 0.940 
   1.65 0.937 0.941 0.944 0.947 0.950 0.953 0.956 0.959 
   1.70 0.955 0.958 0.960 0.963 0.965 0.968 0.970 0.972 
   1.75 0.968 0.970 0.972 0.974 0.976 0.978 0.980 0.981 
   1.80 0.978 0.979 0.981 0.983 0.984 0.985 0.986 0.988 
   1.85 0.984 0.986 0.987 0.988 0.989 0.990 0.991 0.992 
   1.90 0.989 0.990 0.991 0.992 0.993 0.994 0.994 0.995 
   1.95 0.993 0.994 0.994 0.995 0.995 0.996 0.996 0.997 
   2.00 0.995 0.996 0.996 0.997 0.997 0.997 0.998 0.998 
   2.05 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 
   2.10 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   2.15 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 
   2.20 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.25 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-23 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        53          54         55           56          57           58           59           60 
 
 
   1.00 0.161 0.161 0.162 0.162 0.162 0.163 0.163 0.163 
   1.05 0.230 0.231 0.232 0.233 0.234 0.235 0.236 0.237 
   1.10 0.309 0.311 0.313 0.316 0.318 0.320 0.322 0.324 
   1.15 0.396 0.399 0.403 0.406 0.409 0.412 0.415 0.418 
   1.20 0.486 0.490 0.494 0.498 0.502 0.506 0.510 0.514 
   1.25 0.574 0.579 0.584 0.589 0.593 0.598 0.603 0.607 
   1.30 0.656 0.662 0.667 0.672 0.677 0.682 0.687 0.692 
   1.35 0.730 0.735 0.740 0.746 0.751 0.756 0.761 0.766 
   1.40 0.793 0.798 0.803 0.808 0.813 0.818 0.822 0.827 
   1.45 0.845 0.850 0.854 0.859 0.863 0.867 0.872 0.876 
   1.50 0.887 0.891 0.895 0.899 0.902 0.906 0.910 0.913 
   1.55 0.919 0.922 0.926 0.929 0.932 0.935 0.938 0.941 
   1.60 0.943 0.946 0.949 0.951 0.954 0.956 0.958 0.961 
   1.65 0.961 0.963 0.965 0.967 0.969 0.971 0.973 0.974 
   1.70 0.974 0.975 0.977 0.979 0.980 0.981 0.982 0.984 
   1.75 0.983 0.984 0.985 0.986 0.987 0.988 0.989 0.990 
   1.80 0.989 0.990 0.990 0.991 0.992 0.993 0.993 0.994 
   1.85 0.993 0.993 0.994 0.994 0.995 0.995 0.996 0.996 
   1.90 0.995 0.996 0.996 0.997 0.997 0.997 0.998 0.998 
   1.95 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 
   2.00 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   2.05 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.10 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-24 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        61          62         63            64         65            66           67           68 
 
 
   1.00 0.163 0.164 0.164 0.164 0.164 0.165 0.165 0.165 
   1.05 0.238 0.239 0.240 0.241 0.242 0.243 0.244 0.245 
   1.10 0.326 0.328 0.330 0.332 0.334 0.335 0.337 0.339 
   1.15 0.421 0.424 0.427 0.430 0.433 0.435 0.438 0.441 
   1.20 0.518 0.522 0.526 0.529 0.533 0.537 0.540 0.544 
   1.25 0.612 0.616 0.620 0.625 0.629 0.633 0.637 0.641 
   1.30 0.697 0.701 0.706 0.710 0.715 0.719 0.724 0.728 
   1.35 0.770 0.775 0.779 0.784 0.788 0.792 0.797 0.801 
   1.40 0.831 0.835 0.840 0.844 0.848 0.851 0.855 0.859 
   1.45 0.879 0.883 0.887 0.890 0.894 0.897 0.900 0.903 
   1.50 0.916 0.919 0.922 0.925 0.928 0.931 0.933 0.936 
   1.55 0.943 0.946 0.948 0.950 0.953 0.955 0.957 0.959 
   1.60 0.963 0.964 0.966 0.968 0.970 0.971 0.973 0.974 
   1.65 0.976 0.977 0.979 0.980 0.981 0.982 0.983 0.984 
   1.70 0.985 0.986 0.987 0.988 0.988 0.989 0.990 0.991 
   1.75 0.991 0.991 0.992 0.992 0.993 0.994 0.994 0.994 
   1.80 0.994 0.995 0.995 0.996 0.996 0.996 0.997 0.997 
   1.85 0.997 0.997 0.997 0.997 0.998 0.998 0.998 0.998 
   1.90 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   1.95 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   2.00 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-25 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        69          70         71           72          73           74           75            76 
 
 
   1.00 0.165 0.166 0.166 0.166 0.166 0.167 0.167 0.167 
   1.05 0.246 0.247 0.248 0.249 0.250 0.251 0.252 0.253 
   1.10 0.341 0.343 0.345 0.347 0.348 0.350 0.352 0.354 
   1.15 0.444 0.447 0.449 0.452 0.455 0.457 0.460 0.463 
   1.20 0.548 0.551 0.555 0.558 0.561 0.565 0.568 0.571 
   1.25 0.645 0.649 0.653 0.657 0.661 0.665 0.668 0.672 
   1.30 0.732 0.736 0.740 0.744 0.748 0.752 0.756 0.759 
   1.35 0.805 0.809 0.812 0.816 0.820 0.823 0.827 0.830 
   1.40 0.862 0.866 0.869 0.873 0.876 0.879 0.882 0.885 
   1.45 0.906 0.909 0.912 0.915 0.917 0.920 0.923 0.925 
   1.50 0.938 0.940 0.943 0.945 0.947 0.949 0.951 0.953 
   1.55 0.960 0.962 0.964 0.965 0.967 0.968 0.970 0.971 
   1.60 0.975 0.977 0.978 0.979 0.980 0.981 0.982 0.983 
   1.65 0.985 0.986 0.987 0.988 0.988 0.989 0.990 0.990 
   1.70 0.991 0.992 0.992 0.993 0.993 0.994 0.994 0.995 
   1.75 0.995 0.995 0.996 0.996 0.996 0.997 0.997 0.997 
   1.80 0.997 0.997 0.998 0.998 0.998 0.998 0.998 0.998 
   1.85 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.90 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-26 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        77          78          79          80          81           82           83           84 
 
 
   1.00 0.167 0.167 0.168 0.168 0.168 0.168 0.168 0.169 
   1.05 0.254 0.254 0.255 0.256 0.257 0.258 0.259 0.260 
   1.10 0.355 0.357 0.359 0.361 0.362 0.364 0.366 0.367 
   1.15 0.465 0.468 0.471 0.473 0.476 0.478 0.481 0.483 
   1.20 0.575 0.578 0.581 0.584 0.588 0.591 0.594 0.597 
   1.25 0.676 0.679 0.683 0.687 0.690 0.693 0.697 0.700 
   1.30 0.763 0.767 0.770 0.774 0.777 0.781 0.784 0.787 
   1.35 0.834 0.837 0.840 0.844 0.847 0.850 0.853 0.856 
   1.40 0.888 0.891 0.894 0.896 0.899 0.901 0.904 0.906 
   1.45 0.927 0.930 0.932 0.934 0.936 0.938 0.940 0.942 
   1.50 0.954 0.956 0.958 0.959 0.961 0.962 0.964 0.965 
   1.55 0.972 0.974 0.975 0.976 0.977 0.978 0.979 0.980 
   1.60 0.984 0.985 0.985 0.986 0.987 0.988 0.988 0.989 
   1.65 0.991 0.991 0.992 0.992 0.993 0.993 0.994 0.994 
   1.70 0.995 0.995 0.996 0.996 0.996 0.996 0.997 0.997 
   1.75 0.997 0.997 0.998 0.998 0.998 0.998 0.998 0.998 
   1.80 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.85 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-27 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        85          86         87            88         89           90           91           92 
 
 
   1.00 0.169 0.169 0.169 0.169 0.169 0.170 0.170 0.170 
   1.05 0.260 0.261 0.262 0.263 0.264 0.265 0.265 0.266 
   1.10 0.369 0.371 0.372 0.374 0.376 0.377 0.379 0.380 
   1.15 0.486 0.488 0.491 0.493 0.495 0.498 0.500 0.502 
   1.20 0.600 0.603 0.606 0.609 0.612 0.615 0.618 0.621 
   1.25 0.704 0.707 0.710 0.713 0.716 0.720 0.723 0.726 
   1.30 0.790 0.794 0.797 0.800 0.803 0.806 0.809 0.812 
   1.35 0.859 0.861 0.864 0.867 0.870 0.872 0.875 0.877 
   1.40 0.909 0.911 0.913 0.916 0.918 0.920 0.922 0.924 
   1.45 0.944 0.945 0.947 0.949 0.950 0.952 0.953 0.955 
   1.50 0.966 0.968 0.969 0.970 0.971 0.972 0.973 0.974 
   1.55 0.981 0.982 0.982 0.983 0.984 0.985 0.985 0.986 
   1.60 0.989 0.990 0.990 0.991 0.991 0.992 0.992 0.993 
   1.65 0.994 0.995 0.995 0.995 0.996 0.996 0.996 0.996 
   1.70 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.998 
   1.75 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.80 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-28 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 80 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        93          94         95           96          97           98           99           100 
 
 
   1.00 0.170 0.170 0.170 0.170 0.171 0.171 0.171 0.171 
   1.05 0.267 0.268 0.269 0.269 0.270 0.271 0.272 0.272 
   1.10 0.382 0.384 0.385 0.387 0.388 0.390 0.391 0.393 
   1.15 0.505 0.507 0.509 0.512 0.514 0.516 0.519 0.521 
   1.20 0.624 0.626 0.629 0.632 0.635 0.638 0.640 0.643 
   1.25 0.729 0.732 0.735 0.738 0.741 0.743 0.746 0.749 
   1.30 0.815 0.818 0.820 0.823 0.826 0.828 0.831 0.834 
   1.35 0.880 0.882 0.885 0.887 0.889 0.891 0.893 0.896 
   1.40 0.926 0.928 0.929 0.931 0.933 0.935 0.936 0.938 
   1.45 0.956 0.958 0.959 0.960 0.961 0.963 0.964 0.965 
   1.50 0.975 0.976 0.977 0.978 0.979 0.980 0.980 0.981 
   1.55 0.987 0.987 0.988 0.988 0.989 0.989 0.990 0.990 
   1.60 0.993 0.993 0.994 0.994 0.994 0.995 0.995 0.995 
   1.65 0.997 0.997 0.997 0.997 0.997 0.997 0.998 0.998 
   1.70 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   1.75 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   1.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-29 

 
 

TABLE FOR 
90 PERCENT CONFIDENCE 



 

B-30 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR          5           6            7             8            9           10           11           12 
 
 
   1.00 0.036 0.044 0.049 0.053 0.055 0.057 0.059 0.060 
   1.05 0.043 0.052 0.059 0.064 0.067 0.071 0.073 0.076 
   1.10 0.050 0.062 0.070 0.076 0.081 0.085 0.089 0.093 
   1.15 0.059 0.072 0.082 0.089 0.096 0.102 0.107 0.112 
   1.20 0.068 0.083 0.095 0.104 0.113 0.120 0.127 0.134 
   1.25 0.078 0.095 0.109 0.120 0.130 0.140 0.149 0.157 
   1.30 0.088 0.108 0.124 0.137 0.150 0.161 0.172 0.182 
   1.35 0.099 0.121 0.140 0.156 0.170 0.184 0.197 0.209 
   1.40 0.111 0.136 0.156 0.175 0.192 0.208 0.223 0.238 
   1.45 0.124 0.151 0.174 0.195 0.214 0.233 0.250 0.267 
   1.50 0.136 0.166 0.192 0.216 0.238 0.258 0.278 0.298 
   1.55 0.150 0.183 0.211 0.237 0.262 0.285 0.307 0.329 
   1.60 0.164 0.199 0.231 0.260 0.287 0.312 0.337 0.361 
   1.65 0.178 0.217 0.251 0.282 0.312 0.340 0.367 0.393 
   1.70 0.193 0.234 0.271 0.305 0.337 0.368 0.397 0.425 
   1.75 0.208 0.252 0.292 0.329 0.363 0.396 0.427 0.456 
   1.80 0.223 0.270 0.313 0.352 0.389 0.424 0.457 0.488 
   1.85 0.238 0.289 0.334 0.376 0.415 0.451 0.486 0.518 
   1.90 0.254 0.307 0.355 0.399 0.440 0.479 0.515 0.548 
   1.95 0.270 0.326 0.376 0.423 0.465 0.505 0.543 0.578 
   2.00 0.286 0.345 0.398 0.446 0.490 0.532 0.570 0.606 
   2.05 0.302 0.364 0.419 0.469 0.515 0.557 0.596 0.633 
   2.10 0.318 0.382 0.439 0.491 0.539 0.582 0.622 0.658 
   2.15 0.334 0.401 0.460 0.513 0.562 0.606 0.646 0.683 
   2.20 0.351 0.419 0.480 0.535 0.585 0.629 0.670 0.706 
   2.25 0.367 0.437 0.500 0.556 0.606 0.652 0.692 0.729 
   2.30 0.383 0.456 0.520 0.577 0.628 0.673 0.714 0.749 
   2.35 0.399 0.473 0.539 0.597 0.648 0.694 0.734 0.769 
   2.40 0.415 0.491 0.557 0.616 0.668 0.713 0.753 0.787 
   2.45 0.430 0.508 0.576 0.635 0.686 0.732 0.771 0.805 
   2.50 0.446 0.525 0.593 0.653 0.705 0.749 0.788 0.821 
   2.55 0.461 0.541 0.611 0.670 0.722 0.766 0.803 0.835 
   2.60 0.476 0.558 0.627 0.687 0.738 0.782 0.818 0.849 
   2.65 0.491 0.573 0.644 0.703 0.754 0.796 0.832 0.862 
   2.70 0.505 0.589 0.659 0.719 0.769 0.810 0.845 0.874 
   2.75 0.520 0.604 0.674 0.733 0.783 0.824 0.857 0.885 
   2.80 0.534 0.618 0.689 0.748 0.796 0.836 0.868 0.895 
   2.85 0.547 0.633 0.703 0.761 0.809 0.847 0.879 0.904 
   2.90 0.561 0.646 0.717 0.774 0.821 0.858 0.889 0.913 
   2.95 0.574 0.660 0.730 0.786 0.832 0.868 0.897 0.920 
   3.00 0.587 0.673 0.742 0.798 0.842 0.878 0.906 0.927 
 



 

B-31 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        13         14          15           16          17           18           19           20 
 
 
   1.00 0.062 0.063 0.064 0.065 0.066 0.066 0.067 0.068 
   1.05 0.078 0.080 0.082 0.083 0.085 0.087 0.088 0.090 
   1.10 0.096 0.099 0.102 0.105 0.108 0.111 0.113 0.116 
   1.15 0.117 0.121 0.126 0.130 0.134 0.138 0.142 0.146 
   1.20 0.140 0.146 0.152 0.158 0.164 0.169 0.174 0.180 
   1.25 0.165 0.173 0.181 0.188 0.196 0.203 0.210 0.217 
   1.30 0.192 0.202 0.212 0.221 0.230 0.239 0.248 0.257 
   1.35 0.221 0.233 0.245 0.256 0.267 0.278 0.289 0.300 
   1.40 0.252 0.266 0.280 0.293 0.306 0.319 0.331 0.344 
   1.45 0.284 0.300 0.316 0.331 0.346 0.361 0.375 0.389 
   1.50 0.317 0.335 0.353 0.370 0.387 0.403 0.419 0.435 
   1.55 0.350 0.370 0.390 0.409 0.428 0.446 0.463 0.480 
   1.60 0.384 0.406 0.427 0.448 0.468 0.488 0.507 0.525 
   1.65 0.418 0.442 0.465 0.487 0.508 0.529 0.549 0.568 
   1.70 0.451 0.477 0.502 0.525 0.548 0.569 0.590 0.610 
   1.75 0.485 0.512 0.537 0.562 0.585 0.608 0.629 0.649 
   1.80 0.517 0.546 0.572 0.598 0.622 0.644 0.666 0.686 
   1.85 0.549 0.578 0.606 0.632 0.656 0.679 0.701 0.721 
   1.90 0.580 0.610 0.638 0.664 0.689 0.711 0.733 0.753 
   1.95 0.610 0.640 0.669 0.695 0.719 0.742 0.763 0.782 
   2.00 0.639 0.669 0.697 0.723 0.747 0.770 0.790 0.809 
   2.05 0.666 0.696 0.725 0.750 0.774 0.795 0.815 0.833 
   2.10 0.692 0.722 0.750 0.775 0.798 0.819 0.837 0.854 
   2.15 0.716 0.746 0.773 0.798 0.820 0.840 0.858 0.873 
   2.20 0.739 0.769 0.795 0.819 0.840 0.859 0.876 0.891 
   2.25 0.761 0.790 0.816 0.838 0.858 0.876 0.892 0.906 
   2.30 0.781 0.809 0.834 0.856 0.875 0.892 0.906 0.919 
   2.35 0.800 0.827 0.851 0.872 0.890 0.905 0.919 0.930 
   2.40 0.818 0.844 0.866 0.886 0.903 0.917 0.930 0.940 
   2.45 0.834 0.859 0.881 0.899 0.915 0.928 0.940 0.949 
   2.50 0.849 0.873 0.893 0.911 0.925 0.938 0.948 0.957 
   2.55 0.863 0.886 0.905 0.921 0.935 0.946 0.955 0.963 
   2.60 0.875 0.897 0.915 0.930 0.943 0.953 0.962 0.969 
   2.65 0.887 0.908 0.925 0.939 0.950 0.960 0.967 0.974 
   2.70 0.898 0.917 0.933 0.946 0.957 0.965 0.972 0.978 
   2.75 0.907 0.926 0.941 0.953 0.962 0.970 0.976 0.981 
   2.80 0.916 0.934 0.947 0.958 0.967 0.974 0.980 0.984 
   2.85 0.924 0.941 0.953 0.964 0.972 0.978 0.983 0.987 
   2.90 0.932 0.947 0.959 0.968 0.975 0.981 0.985 0.989 
   2.95 0.938 0.952 0.963 0.972 0.979 0.984 0.988 0.991 
   3.00 0.944 0.958 0.968 0.975 0.981 0.986 0.989 0.992 
 



 

B-32 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        21          22         23           24          25           26           27            28 
 
 
   1.00 0.068 0.069 0.070 0.070 0.071 0.071 0.072 0.072 
   1.05 0.091 0.093 0.094 0.095 0.096 0.098 0.099 0.100 
   1.10 0.118 0.121 0.123 0.125 0.127 0.130 0.132 0.134 
   1.15 0.150 0.153 0.157 0.160 0.164 0.167 0.170 0.174 
   1.20 0.185 0.190 0.195 0.200 0.205 0.209 0.214 0.219 
   1.25 0.224 0.230 0.237 0.243 0.250 0.256 0.262 0.269 
   1.30 0.266 0.274 0.282 0.290 0.298 0.306 0.314 0.322 
   1.35 0.310 0.320 0.330 0.340 0.349 0.359 0.368 0.378 
   1.40 0.356 0.368 0.379 0.391 0.402 0.413 0.424 0.434 
   1.45 0.403 0.416 0.429 0.442 0.455 0.467 0.479 0.491 
   1.50 0.450 0.465 0.479 0.494 0.507 0.521 0.534 0.547 
   1.55 0.497 0.513 0.528 0.544 0.558 0.573 0.587 0.600 
   1.60 0.542 0.560 0.576 0.592 0.607 0.622 0.637 0.650 
   1.65 0.587 0.604 0.621 0.638 0.654 0.669 0.683 0.697 
   1.70 0.629 0.647 0.664 0.681 0.697 0.712 0.726 0.740 
   1.75 0.668 0.687 0.704 0.721 0.736 0.751 0.765 0.779 
   1.80 0.706 0.724 0.741 0.757 0.772 0.787 0.800 0.813 
   1.85 0.740 0.758 0.774 0.790 0.805 0.818 0.831 0.843 
   1.90 0.771 0.789 0.805 0.820 0.833 0.846 0.858 0.869 
   1.95 0.800 0.816 0.832 0.846 0.859 0.871 0.882 0.892 
   2.00 0.826 0.841 0.856 0.869 0.881 0.892 0.902 0.911 
   2.05 0.849 0.864 0.877 0.889 0.900 0.910 0.919 0.927 
   2.10 0.869 0.883 0.896 0.907 0.917 0.926 0.934 0.941 
   2.15 0.888 0.900 0.912 0.922 0.931 0.939 0.946 0.952 
   2.20 0.904 0.915 0.926 0.935 0.943 0.950 0.956 0.962 
   2.25 0.918 0.928 0.938 0.946 0.953 0.959 0.965 0.969 
   2.30 0.930 0.940 0.948 0.955 0.961 0.967 0.972 0.976 
   2.35 0.940 0.949 0.957 0.963 0.968 0.973 0.977 0.981 
   2.40 0.950 0.957 0.964 0.970 0.974 0.978 0.982 0.985 
   2.45 0.957 0.964 0.970 0.975 0.979 0.983 0.985 0.988 
   2.50 0.964 0.970 0.975 0.980 0.983 0.986 0.988 0.990 
   2.55 0.970 0.975 0.980 0.983 0.986 0.989 0.991 0.993 
   2.60 0.975 0.979 0.983 0.986 0.989 0.991 0.993 0.994 
   2.65 0.979 0.983 0.986 0.989 0.991 0.993 0.994 0.995 
   2.70 0.982 0.986 0.989 0.991 0.993 0.994 0.996 0.996 
   2.75 0.985 0.988 0.991 0.993 0.994 0.996 0.996 0.997 
   2.80 0.988 0.990 0.992 0.994 0.995 0.996 0.997 0.998 
   2.85 0.990 0.992 0.994 0.995 0.996 0.997 0.998 0.998 
   2.90 0.991 0.993 0.995 0.996 0.997 0.998 0.998 0.999 
   2.95 0.993 0.995 0.996 0.997 0.998 0.998 0.999 0.999 
   3.00 0.994 0.996 0.997 0.998 0.998 0.999 0.999 0.999 
 



 

B-33 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        29          30          31          32          33            34          35           36 
 
 
   1.00 0.072 0.073 0.073 0.074 0.074 0.074 0.075 0.075 
   1.05 0.101 0.102 0.103 0.104 0.105 0.106 0.107 0.108 
   1.10 0.136 0.138 0.140 0.142 0.144 0.146 0.147 0.149 
   1.15 0.177 0.180 0.183 0.186 0.189 0.192 0.195 0.198 
   1.20 0.223 0.228 0.232 0.237 0.241 0.246 0.250 0.254 
   1.25 0.275 0.281 0.287 0.292 0.298 0.304 0.310 0.315 
   1.30 0.329 0.337 0.344 0.352 0.359 0.366 0.373 0.380 
   1.35 0.387 0.396 0.404 0.413 0.422 0.430 0.439 0.447 
   1.40 0.445 0.455 0.465 0.475 0.485 0.495 0.504 0.513 
   1.45 0.503 0.514 0.525 0.536 0.547 0.557 0.568 0.578 
   1.50 0.559 0.571 0.583 0.595 0.606 0.617 0.628 0.638 
   1.55 0.613 0.626 0.638 0.650 0.662 0.673 0.684 0.695 
   1.60 0.664 0.677 0.689 0.701 0.713 0.724 0.735 0.745 
   1.65 0.711 0.723 0.736 0.748 0.759 0.770 0.780 0.790 
   1.70 0.753 0.766 0.778 0.789 0.800 0.810 0.820 0.829 
   1.75 0.791 0.803 0.815 0.825 0.835 0.845 0.854 0.863 
   1.80 0.825 0.836 0.847 0.857 0.866 0.875 0.883 0.891 
   1.85 0.854 0.865 0.874 0.883 0.892 0.900 0.907 0.914 
   1.90 0.880 0.889 0.898 0.906 0.913 0.920 0.927 0.933 
   1.95 0.901 0.910 0.918 0.925 0.931 0.937 0.943 0.948 
   2.00 0.919 0.927 0.934 0.940 0.946 0.951 0.956 0.960 
   2.05 0.935 0.941 0.947 0.953 0.958 0.962 0.966 0.970 
   2.10 0.947 0.953 0.958 0.963 0.967 0.971 0.974 0.977 
   2.15 0.958 0.963 0.967 0.971 0.975 0.978 0.980 0.983 
   2.20 0.967 0.971 0.974 0.978 0.981 0.983 0.985 0.987 
   2.25 0.973 0.977 0.980 0.983 0.985 0.987 0.989 0.991 
   2.30 0.979 0.982 0.985 0.987 0.989 0.990 0.992 0.993 
   2.35 0.984 0.986 0.988 0.990 0.992 0.993 0.994 0.995 
   2.40 0.987 0.989 0.991 0.992 0.994 0.995 0.996 0.996 
   2.45 0.990 0.992 0.993 0.994 0.995 0.996 0.997 0.997 
   2.50 0.992 0.994 0.995 0.996 0.996 0.997 0.998 0.998 
   2.55 0.994 0.995 0.996 0.997 0.997 0.998 0.998 0.999 
   2.60 0.995 0.996 0.997 0.998 0.998 0.998 0.999 0.999 
   2.65 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 
   2.70 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   2.75 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 
   2.80 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.85 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.90 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.95 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-34 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        37          38         39           40          41           42           43            44 
 
 
   1.00 0.075 0.075 0.076 0.076 0.076 0.077 0.077 0.077 
   1.05 0.109 0.110 0.111 0.112 0.113 0.113 0.114 0.115 
   1.10 0.151 0.153 0.155 0.156 0.158 0.160 0.162 0.163 
   1.15 0.201 0.204 0.207 0.210 0.213 0.215 0.218 0.221 
   1.20 0.258 0.262 0.267 0.271 0.275 0.279 0.283 0.287 
   1.25 0.321 0.326 0.332 0.337 0.343 0.348 0.353 0.358 
   1.30 0.387 0.394 0.401 0.407 0.414 0.421 0.427 0.433 
   1.35 0.455 0.463 0.471 0.479 0.486 0.494 0.501 0.509 
   1.40 0.522 0.531 0.540 0.549 0.557 0.566 0.574 0.582 
   1.45 0.587 0.597 0.606 0.616 0.625 0.633 0.642 0.651 
   1.50 0.649 0.659 0.668 0.678 0.687 0.696 0.705 0.713 
   1.55 0.705 0.715 0.724 0.734 0.743 0.752 0.760 0.768 
   1.60 0.755 0.765 0.774 0.783 0.792 0.800 0.808 0.816 
   1.65 0.800 0.809 0.818 0.826 0.834 0.842 0.849 0.856 
   1.70 0.838 0.847 0.855 0.862 0.870 0.877 0.883 0.889 
   1.75 0.871 0.878 0.886 0.892 0.899 0.905 0.911 0.916 
   1.80 0.898 0.905 0.911 0.917 0.923 0.928 0.933 0.937 
   1.85 0.920 0.926 0.932 0.937 0.941 0.946 0.950 0.954 
   1.90 0.938 0.943 0.948 0.952 0.956 0.960 0.963 0.966 
   1.95 0.953 0.957 0.961 0.964 0.967 0.970 0.973 0.976 
   2.00 0.964 0.967 0.971 0.974 0.976 0.978 0.981 0.983 
   2.05 0.973 0.976 0.978 0.981 0.983 0.984 0.986 0.988 
   2.10 0.980 0.982 0.984 0.986 0.987 0.989 0.990 0.991 
   2.15 0.985 0.987 0.988 0.990 0.991 0.992 0.993 0.994 
   2.20 0.989 0.990 0.992 0.993 0.994 0.994 0.995 0.996 
   2.25 0.992 0.993 0.994 0.995 0.996 0.996 0.997 0.997 
   2.30 0.994 0.995 0.996 0.996 0.997 0.997 0.998 0.998 
   2.35 0.996 0.996 0.997 0.997 0.998 0.998 0.998 0.999 
   2.40 0.997 0.997 0.998 0.998 0.998 0.999 0.999 0.999 
   2.45 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
   2.50 0.998 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.55 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
   2.60 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.65 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-35 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        45          46         47           48          49           50           51           52 
 
 
   1.00 0.077 0.077 0.078 0.078 0.078 0.078 0.078 0.079 
   1.05 0.116 0.117 0.117 0.115 0.119 0.120 0.121 0.121 
   1.10 0.165 0.167 0.168 0.170 0.171 0.173 0.175 0.176 
   1.15 0.224 0.226 0.229 0.232 0.234 0.237 0.240 0.242 
   1.20 0.291 0.295 0.298 0.302 0.306 0.310 0.314 0.317 
   1.25 0.364 0.369 0.374 0.379 0.384 0.389 0.394 0.399 
   1.30 0.440 0.446 0.452 0.458 0.464 0.470 0.476 0.482 
   1.35 0.516 0.523 0.530 0.537 0.544 0.551 0.558 0.564 
   1.40 0.590 0.598 0.605 0.613 0.620 0.627 0.635 0.642 
   1.45 0.659 0.667 0.675 0.683 0.690 0.698 0.705 0.712 
   1.50 0.721 0.729 0.737 0.745 0.752 0.759 0.767 0.773 
   1.55 0.776 0.784 0.792 0.799 0.806 0.813 0.819 0.825 
   1.60 0.824 0.831 0.838 0.844 0.851 0.857 0.863 0.868 
   1.65 0.863 0.870 0.876 0.882 0.887 0.892 0.898 0.902 
   1.70 0.895 0.901 0.906 0.911 0.916 0.921 0.925 0.929 
   1.75 0.921 0.926 0.931 0.935 0.939 0.943 0.946 0.949 
   1.80 0.941 0.945 0.949 0.953 0.956 0.959 0.962 0.964 
   1.85 0.957 0.960 0.963 0.966 0.969 0.971 0.973 0.975 
   1.90 0.969 0.972 0.974 0.976 0.978 0.980 0.982 0.983 
   1.95 0.978 0.980 0.982 0.983 0.985 0.986 0.988 0.989 
   2.00 0.984 0.986 0.987 0.989 0.990 0.991 0.992 0.993 
   2.05 0.989 0.990 0.991 0.992 0.993 0.994 0.994 0.995 
   2.10 0.992 0.993 0.994 0.995 0.995 0.996 0.996 0.997 
   2.15 0.995 0.995 0.996 0.996 0.997 0.997 0.998 0.998 
   2.20 0.996 0.997 0.997 0.998 0.998 0.998 0.998 0.999 
   2.25 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 
   2.30 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   2.35 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   2.40 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-36 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        53          54         55           56          57           58           59           60 
 
 
   1.00 0.079 0.079 0.079 0.079 0.079 0.080 0.080 0.080 
   1.05 0.122 0.123 0.123 0.124 0.125 0.126 0.126 0.127 
   1.10 0.178 0.179 0.181 0.182 0.184 0.185 0.187 0.188 
   1.15 0.245 0.247 0.250 0.252 0.255 0.257 0.260 0.262 
   1.20 0.321 0.325 0.328 0.332 0.336 0.339 0.343 0.346 
   1.25 0.404 0.408 0.413 0.418 0.422 0.427 0.432 0.436 
   1.30 0.488 0.494 0.499 0.505 0.511 0.516 0.522 0.527 
   1.35 0.571 0.577 0.584 0.590 0.596 0.602 0.608 0.614 
   1.40 0.649 0.655 0.662 0.669 0.675 0.681 0.687 0.694 
   1.45 0.719 0.726 0.732 0.739 0.745 0.751 0.757 0.763 
   1.50 0.780 0.786 0.793 0.799 0.805 0.811 0.816 0.822 
   1.55 0.832 0.838 0.843 0.849 0.854 0.859 0.864 0.869 
   1.60 0.874 0.879 0.884 0.889 0.893 0.898 0.902 0.906 
   1.65 0.907 0.912 0.916 0.920 0.924 0.927 0.931 0.934 
   1.70 0.933 0.937 0.940 0.943 0.947 0.950 0.952 0.955 
   1.75 0.953 0.955 0.958 0.961 0.963 0.966 0.968 0.970 
   1.80 0.967 0.969 0.971 0.973 0.975 0.977 0.979 0.980 
   1.85 0.977 0.979 0.981 0.982 0.984 0.985 0.986 0.987 
   1.90 0.985 0.986 0.987 0.988 0.989 0.990 0.991 0.992 
   1.95 0.990 0.991 0.992 0.992 0.993 0.994 0.994 0.995 
   2.00 0.993 0.994 0.995 0.995 0.996 0.996 0.996 0.997 
   2.05 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 
   2.10 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 
   2.15 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   2.20 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.25 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-37 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        61          62         63           64          65           66           67           68 
 
 
   1.00 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.081 
   1.05 0.128 0.128 0.129 0.130 0.130 0.131 0.131 0.132 
   1.10 0.190 0.191 0.192 0.194 0.195 0.197 0.198 0.200 
   1.15 0.265 0.267 0.270 0.272 0.274 0.277 0.279 0.281 
   1.20 0.350 0.353 0.357 0.360 0.364 0.367 0.371 0.374 
   1.25 0.441 0.445 0.450 0.454 0.459 0.463 0.467 0.472 
   1.30 0.532 0.538 0.543 0.548 0.553 0.558 0.563 0.568 
   1.35 0.620 0.626 0.631 0.637 0.642 0.648 0.653 0.659 
   1.40 0.700 0.705 0.711 0.717 0.722 0.728 0.733 0.739 
   1.45 0.769 0.775 0.780 0.786 0.791 0.796 0.801 0.806 
   1.50 0.827 0.832 0.837 0.842 0.847 0.852 0.856 0.860 
   1.55 0.874 0.878 0.883 0.887 0.891 0.895 0.899 0.902 
   1.60 0.910 0.914 0.918 0.921 0.924 0.928 0.931 0.934 
   1.65 0.938 0.941 0.944 0.946 0.949 0.951 0.954 0.956 
   1.70 0.958 0.960 0.962 0.964 0.966 0.968 0.970 0.972 
   1.75 0.972 0.974 0.975 0.977 0.978 0.980 0.981 0.982 
   1.80 0.982 0.983 0.984 0.985 0.986 0.987 0.988 0.989 
   1.85 0.988 0.989 0.990 0.991 0.991 0.992 0.993 0.993 
   1.90 0.993 0.993 0.994 0.994 0.995 0.995 0.996 0.996 
   1.95 0.995 0.996 0.996 0.997 0.997 0.997 0.997 0.998 
   2.00 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 
   2.05 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   2.10 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 
   2.15 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

B-38 

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        69          70          71          72          73           74           75            76 
 
 
   1.00 0.081 0.081 0.081 0.082 0.082 0.082 0.082 0.082 
   1.05 0.133 0.133 0.134 0.135 0.135 0.136 0.136 0.137 
   1.10 0.201 0.202 0.204 0.205 0.206 0.208 0.209 0.210 
   1.15 0.284 0.286 0.289 0.291 0.293 0.295 0.298 0.300 
   1.20 0.377 0.381 0.384 0.387 0.391 0.394 0.397 0.400 
   1.25 0.476 0.480 0.484 0.488 0.493 0.497 0.501 0.505 
   1.30 0.573 0.578 0.583 0.588 0.592 0.597 0.602 0.606 
   1.35 0.664 0.669 0.674 0.679 0.684 0.689 0.694 0.698 
   1.40 0.744 0.749 0.754 0.759 0.763 0.768 0.773 0.777 
   1.45 0.811 0.816 0.820 0.825 0.829 0.833 0.837 0.842 
   1.50 0.865 0.869 0.873 0.877 0.880 0.884 0.888 0.891 
   1.55 0.906 0.909 0.913 0.916 0.919 0.922 0.925 0.928 
   1.60 0.937 0.939 0.942 0.944 0.947 0.949 0.951 0.953 
   1.65 0.958 0.960 0.962 0.964 0.966 0.968 0.969 0.971 
   1.70 0.973 0.975 0.976 0.978 0.979 0.980 0.981 0.982 
   1.75 0.983 0.984 0.985 0.986 0.987 0.988 0.989 0.990 
   1.80 0.990 0.991 0.991 0.992 0.992 0.993 0.993 0.994 
   1.85 0.994 0.994 0.995 0.995 0.996 0.996 0.996 0.997 
   1.90 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.998 
   1.95 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 
   2.00 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   2.05 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        77          78         79           80          81           82           83            84 
 
 
   1.00 0.082 0.082 0.082 0.082 0.082 0.083 0.083 0.083 
   1.05 0.138 0.138 0.139 0.139 0.140 0.141 0.141 0.142 
   1.10 0.212 0.213 0.214 0.216 0.217 0.218 0.220 0.221 
   1.15 0.302 0.304 0.307 0.309 0.311 0.313 0.316 0.318 
   1.20 0.404 0.407 0.410 0.413 0.416 0.419 0.422 0.426 
   1.25 0.509 0.513 0.517 0.521 0.525 0.528 0.532 0.536 
   1.30 0.611 0.615 0.620 0.624 0.628 0.633 0.637 0.641 
   1.35 0.703 0.708 0.712 0.717 0.721 0.725 0.730 0.734 
   1.40 0.782 0.786 0.790 0.795 0.799 0.803 0.807 0.811 
   1.45 0.845 0.849 0.853 0.857 0.860 0.864 0.867 0.871 
   1.50 0.894 0.898 0.901 0.904 0.907 0.910 0.913 0.915 
   1.55 0.930 0.933 0.935 0.938 0.940 0.942 0.944 0.946 
   1.60 0.955 0.957 0.959 0.961 0.963 0.964 0.966 0.967 
   1.65 0.972 0.974 0.975 0.976 0.977 0.979 0.980 0.981 
   1.70 0.983 0.984 0.985 0.986 0.987 0.988 0.988 0.989 
   1.75 0.990 0.991 0.991 0.992 0.993 0.993 0.993 0.994 
   1.80 0.994 0.995 0.995 0.996 0.996 0.996 0.996 0.997 
   1.85 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.998 
   1.90 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   1.95 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 
   2.00 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        85          86          87          88          89           90           91            92 
 
 
   1.00 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 
   1.05 0.142 0.143 0.143 0.144 0.144 0.145 0.146 0.146 
   1.10 0.222 0.224 0.225 0.226 0.227 0.229 0.230 0.231 
   1.15 0.320 0.322 0.324 0.326 0.329 0.331 0.333 0.335 
   1.20 0.429 0.432 0.435 0.438 0.441 0.444 0.447 0.450 
   1.25 0.540 0.544 0.547 0.551 0.555 0.558 0.562 0.565 
   1.30 0.645 0.649 0.653 0.657 0.661 0.665 0.669 0.673 
   1.35 0.738 0.742 0.746 0.750 0.754 0.758 0.762 0.765 
   1.40 0.815 0.818 0.822 0.826 0.829 0.833 0.836 0.840 
   1.45 0.874 0.877 0.880 0.884 0.887 0.889 0.892 0.895 
   1.50 0.918 0.920 0.923 0.925 0.928 0.930 0.932 0.934 
   1.55 0.948 0.950 0.952 0.954 0.956 0.957 0.959 0.961 
   1.60 0.969 0.970 0.971 0.973 0.974 0.975 0.976 0.977 
   1.65 0.982 0.983 0.984 0.984 0.985 0.986 0.987 0.987 
   1.70 0.990 0.990 0.991 0.991 0.992 0.992 0.993 0.993 
   1.75 0.994 0.995 0.995 0.995 0.996 0.996 0.996 0.997 
   1.80 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.998 
   1.85 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
   1.90 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT 
WITH 90 PERCENT CONFIDENCE 

 
EXPECTED NUMBER OF FAILURES 

 
M(T)/TR        93          94         95            96         97           98            99          100 
 
 
   1.00 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 
   1.05 0.147 0.147 0.148 0.148 0.149 0.149 0.150 0.150 
   1.10 0.232 0.234 0.235 0.236 0.237 0.239 0.240 0.241 
   1.15 0.337 0.339 0.341 0.343 0.345 0.348 0.350 0.352 
   1.20 0.453 0.456 0.458 0.461 0.464 0.467 0.470 0.473 
   1.25 0.569 0.573 0.576 0.580 0.583 0.586 0.590 0.593 
   1.30 0.677 0.681 0.684 0.688 0.692 0.695 0.699 0.702 
   1.35 0.769 0.773 0.776 0.780 0.783 0.787 0.790 0.794 
   1.40 0.843 0.846 0.849 0.852 0.855 0.858 0.861 0.864 
   1.45 0.898 0.900 0.903 0.905 0.908 0.910 0.913 0.915 
   1.50 0.936 0.938 0.940 0.942 0.944 0.946 0.948 0.949 
   1.55 0.962 0.964 0.965 0.966 0.968 0.969 0.970 0.971 
   1.60 0.978 0.979 0.980 0.981 0.982 0.983 0.983 0.984 
   1.65 0.988 0.989 0.989 0.990 0.990 0.991 0.991 0.992 
   1.70 0.994 0.994 0.994 0.995 0.995 0.995 0.996 0.996 
   1.75 0.997 0.997 0.997 0.997 0.998 0.998 0.998 0.998 
   1.80 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 
   1.85 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 
   1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 



 

C-1 

APPENDIX C 
DERIVATIONS 

 
Proposition 1. 
 

)f( TRcf obsobs γl≤⇔≤  
 
Proof. 
 

To prove this relation, we use the equation below which follows directly from the 
definition of a 100 γ percent lower confidence bound when obsf  failures occur in a demonstration 
test of length DemT : 
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).f( obsγll ∆  
 
Let g be the function of x > 0 defined by the left-hand side of the equation above with l replaced 
by x.  Note g is a strictly increasing function of x > 0 since g(x) is the probability of obtaining 

obsf  or fewer failures when the constant configuration under test has MTBF x. 
 
I.  First we shall show l≤⇒≤ TRcfobs . 
 
Thus, let cfobs ≤ .  Suppose l < TR.  Then  
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which is a contradiction since g(l) = γ−1 .  Thus, l≤TR . 
 
II.  Next we shall show cfTR obs ≤⇒≤ l .  Thus, let l≤TR .  Suppose cfobs > .  Then 
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Since cfobs > , this contradicts the definition of c (see Equation (5) in Section 2.1.2).  
Thus, cfobs ≤ . 
 
Proposition 2. 
 

For each α<1, T>0, and M(T)>0, the corresponding distribution function of ( )SNL ,γ  
satisfies the inequality 
 

( ) ( )( ) γγ ≥≤ TMSNLob ,Pr  
 
Proof. 
 

Let Wf  denote the density function of W (defined by Equation (20) in Section 2.1.3) 
corresponding to α<1, T>0, M(T)>0.  By inequality (21) in Section 2.1.3, 
 

( ) ( )( )TMSNLob ≤,Pr γ  
 

( ) ( )( ){ } (w)dwf;,LProb  w
0
∫
∞

≤= TMwSNγ  

 

∫
∞

≥
0

 w dw (w)fγ  

 
  γ≥  

 
Proposition 3. 
 

For each α<1, T>0, and M(T)>0, 
 

( )( ) 0,Pr == xSNLob γ  
 
for all real x. 
 
Proof. 
 
 Let α<1, T>0, and M(T)>0.  Clearly, ( ) 0, ≥SNLγ .  Thus, we need to consider 0≥x . 
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 Let ( )SnL ,γ  denote ( )SNL ,γ  conditioned on nN = .  As shown in Appendix A of 
Reference 7, 
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where 2

νχ  is the chi-square random variable with ν degrees of freedom. 
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Then, by (12) in Section 2.1.3, 
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i.e., 
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Thus, 
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It then follows that, 
 

Prob (Lγ (N,S) = x) = 
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= 0, since Prob (N=0) > 0. 

 
Proposition 4. 
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Type II = ( )( ) γγ −≤≤ 1,Pr SNLTRob  for each 1<α  and 0>T  where ( ) TRTM = . 
 
Proof. 
 

Let 1<α  and 0>T  with ( ) TRTM = . 
 
Then 
 

( )( ) =≤ SNLTRob ,Pr γ  
 

( )( ) ( )( )SNLTRobTRSNLob ,Pr,Pr γγ <+=  
 

( )( )SNLTRob ,Pr γ<= , by Proposition 3, 
 

( )( ) γγ −≤≤−= 1,Pr1 TRSNLob , by Proposition 2. 
 
Proposition 5. 
 
 For a growth curve with parameters (α, T, M(T)), the expected number of failures (E(N)) 
can be determined by 
 

)TM( )-1(
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α
=  

 
Proof. 
 
 The observed number of failures by test duration t, denoted by N(t), is a non-
homogeneous Poisson process with ( ) NTN =  and intensity function 
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This implies that N is Poisson distributed with expected value 
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By Equation (18) in Section 2.1.3, 
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This yields 
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Proposition 6. 
 

For a growth curve with parameters (α, T, M(T)), 
 
Prob (A; α, T, M(T)) = 
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where ( )NE∆µ  and ( ) TRTMd ∆ . 
 
Proof. 
 

From (23) in Section 2.1.3 and (34), 
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Letting µ ∆ E(N) and d ∆ M(T)/TR, 
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3 RELIABILITY GROWTH TRACKING 
 
3.1 Introduction.  This section contains material from MIL-HDBK-189 [1] on the AMSAA 
Continuous Tracking Model.  In addition, it presents the AMSAA Discrete Tracking Model 
developed in [2] and an AMSAA subsystem level tracking model (SSTRACK), Reference [3]. 

 
3.1.1  Definition and Objectives of Reliability Growth Tracking.  Reliability growth 

tracking is a process that allows management the opportunity to gauge the progress of the 
reliability effort for a system by obtaining a demonstrated numerical measure of the system 
reliability during a development program based on test data.  Some objectives of reliability 
growth tracking include: 
 

• determining if system reliability is increasing with time (i.e., growth is occurring) and 
to what degree (i.e., growth rate), and 

 
• estimating the demonstrated reliability - a reliability estimate based on test data for 

the system configuration under test at the end of the test phase.  This latter estimate is 
based on the actual performance of the system tested and not on some future 
configuration. 

 
 Reliability growth tracking allows for the situation where the configuration of the system 
may be changing as a result of the incorporation of corrective actions to problem failure modes.  
In the presence of reliability growth, the data from earlier configurations may not be 
representative of the current configuration of the system.  On the other hand, the most recent test 
data, which would best represent the current system configuration, may be limited so that an 
estimate based upon the recent data would not, in itself, be sufficient for a valid determination of 
reliability.  Because of this situation, reliability growth tracking may offer a viable method for 
combining test data from several configurations to obtain a demonstrated reliability estimate for 
the current system configuration, provided the reliability growth tracking model adequately 
represents the combined test data. 
 

3.1.2  Managerial Role.  The role of management in the reliability growth tracking 
process is twofold: 
 

• to systematically plan and assess reliability achievement as a function of time and 
other program resources (such as personnel, money, available prototypes, etc.,) and, 

 
• to control the ongoing rate of reliability achievement by the addition to or reallocation 

of these program resources based on comparisons between the planned and 
demonstrated reliability values. 
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To achieve reliability goals, it is important that the program manager be aware of reliability 
problems during the conduct of the development program so that effective system design 
changes can be funded and implemented.  It is essential, therefore, that periodic assessments 
(tracking) of reliability be made during the test program (usually at the end of a test phase) and 
compared to the planned reliability goals.  A comparison between the assessed and planned 
values will suggest whether the development program is progressing as planned, better than 
planned, or not as well as planned.  Thus, tracking the improvement in system reliability through 
quantitative assessments of progress is an important management function. 
 

3.1.3  Types of Reliability Growth Tracking Models.  Reliability growth tracking 
models are distinguished according to the level at which testing is conducted and failure data are 
collected.  They fall into two categories: system level and subsystem level.  For system level 
reliability growth tracking models, testing is conducted in a full-up integrated manner, failure 
data are collected on an overall system basis, and an assessment is made regarding the system 
reliability.  For subsystem level reliability growth tracking models, the subsystems are tested and 
the failure data are collected on an individual subsystem basis -- the subsystem data are then 
“rolled up” to arrive at an estimate for the demonstrated system reliability. 
 
 System level reliability growth tracking models are further classified according to the 
usage of the system.  They fall into two groups -- continuous and discrete models -- and are 
defined by the type of outcome that the usage provides.  Continuous models are those that apply 
to systems for which usage is measured on a continuous scale, such as time in hours or distance 
in miles.  For continuous models, outcomes are usually measured in terms of an interval or 
range; for example, mean time/miles between failures.  Discrete models are those that apply to 
systems for which usage is measured on an enumerative or classificatory basis, such as pass/fail 
or go/no-go.  For discrete models, outcomes are recorded in terms of distinct, countable events 
that give rise to probability estimates. 
 

3.1.4  Model Substitution. 
 
List of Notation 
 

Discrete Parameters: 
 
  N  number of trials = sample size 
  S  success 
  F  failure 
  NS  number of successes 
  NF  number of failures 
  U  unreliability 
  R  reliability 
 

Continuous Parameters: 
 
  MTTF  mean time/trials to failure 
  MTBF  mean time/trials between failures 
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 In general, continuous models are designed for continuous data, and discrete models are 
designed for discrete data.  In the event a designated model is unavailable for use, it may be 
possible to use a continuous model for discrete data or a discrete model for continuous data.  The 
latter case is generally not a practical option, though.  (The AMSAA Subsystem Tracking Model, 
for example, is a continuous model that may be used with discrete data, subject to the conditions 
mentioned at the end of this paragraph.)  In cases involving model substitution, the “substitute” 
model is used as an approximation for the intended model, and the original data appropriate for 
the intended model must be converted to a format appropriate for the substitute model.  Note that 
in applying a continuous model to discrete data, the results of the approximation improve as the 
number of trials increases and the probability of failure decreases. 
 
 By way of an example, we show a method for converting discrete data to a continuous 
format and vice versa.  Suppose that from a sample size of N = 5 trials the following outcomes 
are observed, where S denotes a success and F denotes a failure: 
 
    FSSSS  
 
The number of successes, NS, is four; the number of failures, NF, is one; and N NS NF= + . 
 
 To begin, note that in discrete terms: 
 

    
N

NFfailureyprobabilitU == )(    (1) 

 
The reciprocal of U, namely N/NF, may be viewed as a measure of the number of trials to the 
number of failures, MTTF, thus allowing a continuous measure to be related to a discrete 
measure: 
 

    
U

MTTF 1
=       (2) 

 
In the example, MTTF = 5 and MTBF = 4, so that: 
 
    1−= MTTFMTBF      (3) 
 
Substituting (2) into (3) and noting that R U= −1  results in: 
 

    
R

R
U

MTBF
−

=−=
1

11     (4) 

 
Equation (4) is used to convert a discrete measure to a continuous measure.  To convert a 
continuous measure to a discrete measure, rearrange (4) and solve for R: 
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R

MTBF
−

=+
1

11      (5) 

 

    
1

11
+

−=
MTBF

R      (6) 

 
3.2 System Level Reliability Growth Tracking Models. 
 

3.2.1  Continuous Tracking Models. 
 

3.2.1.1  Background and Basis for the AMSAA Continuous Tracking Model. 
 

List of Notation 
 
  it   cumulative test time when design modification i is made 
  K  final entry in a sequence of test times; point where the 

last design modification is made 
  iλ   constant failure rate during i-th time interval 
  iF   number of failures during i-th time interval 
  iθ   mean value function for iF  
  ƒ  a particular realization of iF  
  e  exponential function 
  t  cumulative test time 
  F(t)  total number of system failures by time t 
  ( )tθ   mean value function for F(t) 
  ( )yρ   failure rate for configuration i where [ )y t ti i∈ −1,  
  ( )tρ   instantaneous system failure rate at time t; also referred 

to as the failure intensity function 
  λ   scale parameter of parametric function ( )tρ ; ( )λ > 0  
  β   shape parameter of parametric function ( )tρ ; ( )β > 0  
  m(t)  instantaneous mean time between failures at time t 
  T  total test time 
  F  total observed number of failures by time T 
  iX   cumulative time to i-th failure 
  ^  denotes an estimate when placed over a parameter 
  L  lower confidence coefficient 
  U  upper confidence coefficient 
  γ  desired confidence level 
  -  denotes an unbiased estimate when placed over a 

parameter 
  α  significance level 
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 The AMSAA Continuous Reliability Growth Tracking Model may be used to track the 
reliability improvement of a system during a development test phase for which usage is 
measured on a continuous scale.  The model may also be used for tracking the reliability of one-
shot (discrete) systems if there are a large number of trials and the system demonstrates high 
reliability during test. 
 
 The model is designed for tracking system reliability within a test phase and not across 
test phases.  Accordingly, the basis of the model is described in the following way.  Let the start 
of a test phase be initialized at time zero, and let 0 0 1 2= < < < <t t t tKK  denote the cumulative 
test times on the system when design modifications are made.  Assume the system failure rate is 
constant between successive sti ' , and let iλ  denote the constant failure rate during the i-th time 
interval [ )t ti i−1, .  The time intervals do not have to be equal in length.  Based on the constant 
failure rate assumption, the number of failures iF  during the i-th time interval is Poisson 
distributed with mean ( )θ λi i i it t= − −1 . 
 
That is, 
 

    
( ) ( ),...2,1,0

!
)(Pr ===

−

f
f

e
fFob

if
i

i

θθ
 

 (7) 
 
During developmental testing programs, if more than one system prototype is tested and if the 
prototypes have the same basic configuration between modifications, then under the constant 
failure rate assumption, the following are true: 
 

• the time it  may be considered as the cumulative test time to the i-th modification, and 
 

• iF  may be considered as the cumulative total number of failures experienced by all 
system prototypes during the i-th time interval [ )t ti i−1, . 

The previous discussion is summarized graphically: 
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Figure 3.1  Failure Rates Between Modifications

Phase 1 Phase 2 Phase 3

Failure Rate

t0 t1 t2 t3 t4

λ1

λ2
λ3

λ4 λ5

 
 
 Let t denote the cumulative test time, and let F(t) be the total number of system failures 
by time t.  If t is in the first time interval: 
 

0 t1 t2 t3 t4t

Figure 3.2  Time Line for Phase 2 (t in first time interval)

x

 
 
then F(t) has the Poisson distribution with mean t1λ .  Now if t is in the second time interval: 
 

0 t1 t2 t3 t4t

Figure 3.3  Time Line for Phase 2 (t in second time interval)

x

 
 
then F(t) is the number of system failures 1F  in the first time interval plus the number of system 
failures in the second time interval between 1t  and t.  The failure rate for the first time interval is 
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1λ , and the failure rate for the second time interval is 2λ .  Therefore, the mean of F(t) is the sum 
of the mean of 111 tF λ=  plus the mean number of failures from 1t  to t, which is ( )λ 2 1t t− .  That 
is, F(t) has mean ( ) ( )θ λ λt t t t= + −1 1 2 1 . 
 
 When the failure rate is constant (homogeneous) over a test interval, then F(t) is said to 
follow a homogeneous Poisson process with mean number of failures of the form tλ .  When the 
failure rates change with time, e.g., from interval 1 to interval 2, then under certain conditions, 
F(t) is said to follow a nonhomogeneous Poisson process (NHPP).  In the presence of reliability 
growth, F(t) would follow a NHPP with mean value function: 
 

    ∫=
t

o

dyyt )()( ρθ       (8) 

 
where ( ) [ )ρ λy y t ti i i= ∈ −, ,1 .  From (7), for any t > 0, 
 

    [ ] ( ),...2,1,0
!

)(])([Pr
)(

===
−

f
f

etftFob
tf θθ  (9) 

 
 The integer-valued process ( ){ }F t t, > 0  may be regarded as a NHPP with intensity 
function ( )tρ .  The physical interpretation of ( )tρ  is that for infinitesimally small t∆ , ( )tρ t∆  
is approximately the probability of a system failure in the time interval ( )ttt ∆+, ; that is, it is 
approximately the instantaneous system failure rate.  If ( ) λρ =t , a constant failure rate for all t, 
then a system is experiencing no growth over time, corresponding to the exponential case.  If 
( )tρ  is decreasing with time, ( )λ λ λ1 2 3> > K , then a system is experiencing reliability growth.  

Finally, ( )tρ  increasing over time indicates deterioration in system reliability. 
 
 Based on the learning curve approach, which is outlined in detail in the section on the 
AMSAA Discrete Reliability Growth Tracking Model, the AMSAA Continuous Reliability 
Growth Tracking Model assumes that ( )tρ  may be approximated by a continuous, parametric 
function.  Using a result established for the Discrete Model: 
 
    βλttFE =)]([       (10) 
 
and the instantaneous system failure rate ( )tρ  is the change per unit time of E[F(t)]: 
 

    ( )0,,)]([)( 1 >== − tttFE
dt
dt βλλβρ β   (11) 

 
 With a failure rate ( )tρ  that may change with test time, the NHPP provides a basis for 
describing the reliability growth process within a test phase. 
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Figure 3.4 Parametric Approximation to Failure Rates Between Modifications

Failure

Phase 1 Phase 2 Phase 3

t0 t1 t2 t3 t4

λ1

λ2

λ3
λ4 λ5

 
 

3.2.1.2  The AMSAA Continuous Reliability Growth Tracking Model.  The AMSAA 
Continuous Reliability Growth Tracking Model assumes that within a test phase failures are 
occurring according to a nonhomogeneous Poisson process with failure rate (intensity of failures) 
represented by the parametric function: 
 
    ( ) ( )0,,1 >= − ttt βλβλρ β    (12) 
 
where the parameter λ  is referred to as the scale parameter because it depends upon the unit of 
measurement chosen for t, the parameter β  is referred to as the growth or shape parameter 
because it characterizes the shape of the graph of the intensity function (equation (12) and Figure 
3.4), and t is the cumulative test time.  Under this model the function: 
 

    ( ) 11

(t)
1= m(t) −−= ββλ
ρ

t     (13) 

 
is interpreted as the instantaneous mean time between failures (MTBF) of the system at time t.  
When t corresponds to the total cumulative time for the system; that is, t=T, then m(T) is the 
demonstrated MTBF of the system in its present configuration at the end of test. 
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MTBF

0 Ttt1

m(T)

Figure 3.4.1 Test Phase Reliability Growth Based on
   AMSAA Continuous Tracking Model

( ) [ ]m t t= − −
λ β β 1 1

 
 
Note that the theoretical curve is undefined at the origin.  Typically the MTBF during the initial 
test interval [ ]1,0 t  is characterized by a constant reliability with growth occurring beyond 1t . 
 
Cumulative Number of Failures 
 The total number of failures F(t) accumulated on all test items in cumulative test time t is 
a Poisson random variable, and the probability that exactly ƒ failures occur between the initiation 
of testing and the cumulative test time t is: 
 

    [ ] [ ] ( )

f!
e (t) =f=F(t)

f t

rob
θθ −

Ρ     (14) 

 
in which ( )tθ  is the mean value function; that is, the expected number of failures expressed as a 
function of test time.  To describe the reliability growth process, the cumulative number of 
failures is a function of the form ( ) βλθ tt = , where λ  and β  are positive parameters. 
 
Number of Failures in an Interval 
 The number of failures occurring in the interval from test time 1t  until test time 2t , where 
t t2 1>  is a Poisson random variable with mean: 
 
    ( ) ( ) ( )ββλθθ 1212 tttt −=−     
 (15) 
 
According to the model assumption, the number of failures that occur in any time interval is 
statistically independent of the number of failures that occur in any interval which does not 
overlap the first interval, and only one failure can occur at any instant of time. 
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Intensity Function 
 The intensity function in (12) is sometimes referred to as a failure rate; it is not the failure 
rate of a life distribution, rather it is the failure rate of a process, namely a NHPP. 
 
Option For Individual Failure Time Data 
 
Estimation Procedures For Model 
 Modeling reliability growth as a nonhomogeneous Poisson process permits an assessment 
of the demonstrated reliability by statistical procedures.  The method of maximum likelihood 
provides estimates for the scale parameter λ  and the shape parameter β , which are used in the 
estimation of the intensity function ( )tρ  in (12).  In accordance with (13), the reciprocal of the 
current value of the intensity function is the instantaneous mean time between failures (MTBF) 
for the system.  Procedures for point estimation and interval estimation for the system MTBF are 
described in more detail.  A goodness-of-fit test to determine model suitability is also described. 
 
 The procedures outlined in this section are used to analyze data for which (a) the exact 
times of failure are known and (b) testing is conducted on a time terminated basis or the tests are 
in progress with data available through some time.  The required data consist of the cumulative 
test time on all systems at the occurrence of each failure as well as the accumulated total test 
time T.  To calculate the cumulative test time of a failure occurrence, it is necessary to sum the 
test time on every system at the point of failure.  The data then consist of the F successive failure 
times X X X X F1 2 3< < < <K  that occur prior to T.  This case is referred to as the Option for 
Individual Failure Time Data. 
 
Point Estimation 
 The method of maximum likelihood provides point estimates for the parameters of the 
failure intensity function (12).  The maximum likelihood estimate (mle) for the shape parameter 
β  is: 

    
∑
=

−
= F

i
iXTF

F

1
lnln

β̂      (16) 

 
By equating the observed number of failures by time T (namely F) with the expected number of 
failures by time T (namely E[F(T)]) and by substituting mle’s in place of the true, but unknown, 
parameters in (10) we obtain: 
 
    βλ ˆT ˆ=F        (17) 
 
from which we obtain an estimate for the scale parameter λ : 
 

    
β

λ ˆT
F=ˆ        (18) 
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For any time t > 0, the failure intensity function is estimated by: 
 
    1ˆ tˆˆ=(t) ˆ −ββλρ       (19) 
 
In particular, (19) holds for the total test time T.  By substitution from (17), the estimator $ ( )ρ T  
can be written as: 
 

    

















−

T
F ˆ=

T
T ˆ

  ˆ=Tˆˆ=(T)ˆ
ˆ

1ˆ β
λ

ββλρ
β

β  (20) 

 
where F/T is the estimate of the intensity function for a homogeneous Poisson process.  Hence 
the fraction ( )β̂ 1−  of the initial failure intensity is effectively removed by time T, resulting in 
(20). 
 
 Finally, the reciprocal of ( )Tρ̂  provides an estimate of the mean time between failures of 
the system at the time T and represents the system reliability growth under the model: 
 

    ( ) 11ˆT ˆˆ=
(T) ˆ
1=(T) m̂

−−ββλ
ρ

    (21) 

 
Interval Estimation 
 Interval estimates provide a measure of the uncertainty regarding a parameter.  For the 
reliability growth process, the parameter of primary interest is the system mean time between 
failures at the end of test, m(T).  The probability distribution of the point estimate for the 
intensity function at T, ( )Tρ̂ , is the basis for the interval estimate for the true (but unknown) 
value of the intensity function at T, ( )Tρ . 
 
 These interval estimates are referred to as confidence intervals and may be computed for 
selected confidence levels.  The values in Table C-1 facilitate computation of two-sided 
confidence intervals for m(T) by providing confidence coefficients L and U corresponding to the 
lower bound and upper bound, respectively.  These coefficients are indexed by the total number 
of observed failures F and the desired confidence level γ.  The two-sided confidence interval for 
m(T) is thus: 
 
    (T)m̂Um(T)(T)m̂L F,F, γγ ≤≤    (22) 
 
Table C-2 may be used to compute one-sided interval estimates (lower confidence bounds) for 
m(T) such that: 
 
    (T)m(T) m̂L F, ≤γ      (23) 
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Note that both tables are to be used only for time terminated growth tests.  Also, since the 
number of failures has a discrete probability distribution, the interval estimates in (22) and (23) 
are conservative; that is, the actual confidence level is slightly larger than the desired confidence 
level γ. 
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TABLE C-1.  LOWER (L) AND UPPER (U) COEFFICIENTS 
FOR CONFIDENCE INTERVALS FOR MTBF FROM 
TIME TERMINATED RELIABILITY GROWTH TEST 

 
          γ                       .80           .90           .95        .98 
     F     L    U     L    U     L    U     L    U 
     2  .261 18.66  .200 38.66  .159 78.66  .124 198.7 
     3  .333 6.326  .263 9.736  .217 14.55  .174 24.10 
     4  .385 4.243  .312 5.947  .262 8.093  .215 11.81 
     5  .426 3.386  .352 4.517  .300 5.862  .250 8.043 
     6  .459 2.915  .385 3.764  .331 4.738  .280 6.254 
     7  .487 2.616  .412 3.298  .358 4.061  .305 5.216 
     8  .511 2.407  .436 2.981  .382 3.609  .328 4.539 
     9  .531 2.254  .457 2.750  .403 3.285  .349 4.064 
    10  .549 2.136  .476 2.575  .421 3.042  .367 3.712 
    11  .565 2.041  .492 2.436  .438 2.852  .384 3.441 
    12  .579 1.965  .507 2.324  .453 2.699  .399 3.226 
    13  .592 1.901  .521 2.232  .467 2.574  .413 3.050 
    14  .604 1.846  .533 2.153  .480 2.469  .426 2.904 
    15  .614 1.800  .545 2.087  .492 2.379  .438 2.781 
    16  .624 1.759  .556 2.029  .503 2.302  .449 2.675 
    17  .633 1.723  .565 1.978  .513 2.235  .460 2.584 
    18  .642 1.692  .575 1.933  .523 2.176  .470 2.503 
    19  .650 1.663  .583 1.893  .532 2.123  .479 2.432 
    20  .657 1.638  .591 1.858  .540 2.076  .488 2.369 
    21  .664 1.615  .599 1.825  .548 2.034  .496 2.313 
    22  .670 1.594  .606 1.796  .556 1.996  .504 2.261 
    23  .676 1.574  .613 1.769  .563 1.961  .511 2.215 
    24  .682 1.557  .619 1.745  .570 1.929  .518 2.173 
    25  .687 1.540  .625 1.722  .576 1.900  .525 2.134 
    26  .692 1.525  .631 1.701  .582 1.873  .531 2.098 
    27  .697 1.511  .636 1.682  .588 1.848  .537 2.068 
    28  .702 1.498  .641 1.664  .594 1.825  .543 2.035 
    29  .706 1.486  .646 1.647  .599 1.803  .549 2.006 
    30  .711 1.475  .651 1.631  .604 1.783  .554 1.980 
    35  .729 1.427  .672 1.565  .627 1.699  .579 1.870 
    40  .745 1.390  .690 1.515  .646 1.635  .599 1.788 
    45  .758 1.361  .705 1.476  .662 1.585  .617 1.723 
    50  .769 1.337  .718 1.443  .676 1.544  .632 1.671 
    60  .787 1.300  .739 1.393  .700 1.481  .657 1.591 
    70  .801 1.272  .756 1.356  .718 1.435  .678 1.533 
    80  .813 1.251  .769 1.328  .734 1.399  .695 1.488 
   100  .831 1.219  .791 1.286  .758 1.347  .722 1.423 
γ  = confidence level 
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For F > 100 ,      
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TABLE C-2.  LOWER CONFIDENCE INTERVAL COEFFICIENTS FOR MTBF FROM 

TIME TERMINATED RELIABILITY GROWTH TEST 

      Confidence Level γ            Confidence Level γ 
 
 F  .50  .60  .70  .80  .90  .95  .99    F  .50  .60  .70  .80  .90  .95  .99 
 
 2 .761 .606 .480 .369 .261 .200 .124   51 .987 .939 .891 .838 .771 .720 .635 

 3 .823 .680 .559 .447 .333 .263 .174   52 .987 .940 .892 .840 .773 .722 .637 4 .860 .727 .611 .501 .385 .312 .215   53 .988 .941 .893 .841 .775 .724 .640 
 5 .884 .760 .649 .542 .426 .352 .250   54 .988 .941 .894 .843 .777 .727 .643 
 6 .901 .784 .678 .574 .459 .385 .280   55 .988 .942 .895 .844 .778 .729 .645 
 7 .914 .803 .701 .600 .487 .412 .305   56 .988 .942 .896 .845 .780 .731 .648 
 8 .924 .818 .720 .622 .511 .436 .328   57 .988 .943 .897 .847 .782 .733 .650 
 9 .932 .830 .736 .640 .531 .457 .349   58 .989 .944 .898 .848 .784 .735 .653 
10 .938 .841 .749 .656 .549 .476 .367   59 .989 .944 .899 .849 .785 .737 .655 
11 .943 .849 .761 .670 .565 .492 .384   60 .989 .945 .900 .850 .787 .739 .657 
12 .948 .857 .771 .683 .579 .507 .399   61 .989 .945 .901 .852 .788 .741 .659 
13 .951 .864 .780 .694 .592 .521 .413   62 .989 .946 .901 .853 .790 .742 .662 
14 .955 .870 .788 .704 .604 .533 .426   63 .990 .946 .902 .854 .792 .744 .664 
15 .958 .875 .795 .713 .614 .545 .438   64 .990 .947 .903 .855 .793 .746 .666 
16 .960 .880 .802 .721 .624 .556 .449   65 .990 .947 .904 .856 .794 .748 .668 
17 .962 .884 .808 .729 .633 .565 .460   66 .990 .948 .905 .857 .796 .749 .670 
18 .964 .888 .814 .736 .642 .575 .470   67 .990 .948 .905 .858 .797 .751 .672 
19 .966 .891 .819 .742 .650 .583 .479   68 .990 .948 .906 .859 .799 .752 .674 
20 .968 .895 .823 .748 .657 .591 .488   69 .990 .949 .907 .860 .800 .754 .676 
21 .969 .898 .828 .754 .664 .599 .496   70 .991 .949 .907 .861 .801 .756 .678 
22 .971 .900 .832 .759 .670 .606 .504   71 .991 .950 .908 .862 .803 .757 .680 
23 .972 .903 .836 .764 .676 .613 .511   72 .991 .950 .909 .863 .804 .759 .681 
24 .973 .905 .839 .769 .682 .619 .518   73 .991 .951 .909 .864 .805 .760 .683 
25 .974 .908 .842 .773 .687 .625 .525   74 .991 .951 .910 .865 .806 .761 .685 
26 .975 .910 .846 .777 .692 .631 .531   75 .991 .951 .911 .866 .807 .763 .687 
27 .976 .912 .849 .781 .697 .636 .537   76 .991 .952 .911 .866 .809 .764 .688 
28 .977 .914 .851 .785 .702 .641 .543   77 .991 .952 .912 .867 .810 .766 .690 
29 .978 .915 .854 .788 .706 .646 .549   78 .992 .952 .912 .868 .811 .767 .692 
30 .978 .917 .857 .792 .711 .651 .554   79 .992 .953 .913 .869 .812 .768 .693 
31 .979 .919 .859 .795 .715 .656 .560   80 .992 .953 .914 .870 .813 .769 .695 
32 .980 .920 .861 .798 .719 .660 .565   81 .992 .953 .914 .871 .814 .771 .696 
33 .980 .922 .863 .801 .722 .664 .570   82 .992 .954 .915 .871 .815 .772 .698 
34 .981 .923 .866 .804 .726 .668 .574   83 .992 .954 .915 .872 .816 .773 .699 
35 .981 .924 .868 .806 .729 .672 .579   84 .992 .854 .916 .873 .817 .774 .701 
36 .982 .926 .869 .809 .733 .676 .583   85 .992 .955 .916 .874 .818 .776 .702 
37 .982 .927 .871 .811 .736 .680 .587   86 .992 .955 .917 .874 .819 .777 .704 
38 .983 .928 .873 .814 .739 .683 .591   87 .992 .955 .917 .875 .820 .778 .705 
39 .983 .929 .875 .816 .742 .687 .595   88 .992 .956 .918 .876 .821 .779 .707 
40 .984 .930 .876 .818 .745 .690 .599   89 .993 .956 .918 .876 .822 .780 .708 
41 .984 .931 .878 .820 .747 .693 .603   90 .993 .956 .919 .877 .823 .781 .709 
42 .984 .932 .879 .822 .750 .696 .606   91 .993 .956 .919 .878 .824 .782 .711 
43 .985 .933 .881 .824 .753 .699 .610   92 .993 .957 .920 .878 .825 .783 .712 
44 .985 .934 .882 .826 .755 .702 .613   93 .993 .957 .920 .879 .826 .784 .713 
45 .985 .935 .884 .828 .758 .705 .617   94 .993 .957 .920 .880 .826 .785 .714 
46 .986 .935 .885 .830 .760 .707 .620   95 .993 .957 .921 .880 .827 .786 .716 
47 .986 .936 .886 .832 .762 .710 .623   96 .993 .958 .921 .881 .828 .787 .717 
48 .986 .937 .888 .833 .764 .713 .626   97 .993 .958 .922 .881 .829 .788 .718 
49 .987 .938 .889 .835 .767 .715 .629   98 .993 .958 .922 .882 .830 .789 .719 
50 .987 .939 .890 .837 .769 .718 .632   99 .993 .958 .923 .883 .831 .790 .721 
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Goodness-of-Fit 
 For the case where the individual failure times are known, a Cramér-von Mises statistic is 
used to test the null hypothesis that a nonhomogeneous Poisson process with failure intensity 
function (12) properly describes the reliability growth of a system.  To calculate the statistic, an 
unbiased estimate of the shape parameter β  is used: 
 

    ββ ˆ1
F

F −
=       (24) 

 
This unbiased estimate of β  is for a time terminated reliability growth test with F observed 
failures.  The goodness-of-fit statistic is: 
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where the failure times Xi  must be ordered so that 0 <  X   X    <  X1 2 F≤ ≤ K . 
 
 The null hypothesis that the model represents the observed data is rejected if the statistic 
CF  exceeds the critical value for a chosen significance level α.  Critical values of CF  for 
α =  .20,  .15,  .10,  .05, .01 are shown in Table C-3 where the table is indexed by F, the total 
number of observed failures. 
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TABLE C-3.  CRITICAL VALUES FOR CRAMÉR-VON MISES GOODNESS-OF-FIT TEST 

FOR INDIVIDUAL FAILURE TIME DATA 
 
           α  
        F 

.20 .15 .10 .05 .01 

2 .138 .149 .162 .175 .186 
3 .121 .135 .154 .184 .23 
4 .121 .134 .155 .191 .28 
5 .121 .137 .160 .199 .30 
6 .123 .139 .162 .204 .31 
7 .124 .140 .165 .208 .32 

8 .124 .141 .165 .210 .32 
9 .125 .142 .167 .212 .32 

10 .125 .142 .167 .212 .32 
11 .126 .143 .169 .214 .32 
12 .126 .144 .169 .214 .32 
13 .126 .144 .169 .214 .33 

14 .126 .144 .169 .214 .33 
15 .126 .144 .169 .215 .33 
16 .127 .145 .171 .216 .33 
17 .127 .145 .171 .217 .33 
18 .127 .146 .171 .217 .33 
19 .127 .146 .171 .217 .33 
20 .128 .146 .172 .217 .33 
30 .128 .146 .172 .218 .33 
60 .128 .147 .173 .220 .33 
100 .129 .147 .173 .220 .34 

 
For F > 100 use values for F = 100. 
α  = significance level 
 
 Besides using statistical methods for assessing model goodness-of-fit, one should also 
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in 
Figure 3.4.2).  These plots, derived from the failure data, provide a graphic description of test 
results and should always be part of the reliability analysis. 
 
Example 
 The following example demonstrates the option for individual failure time data in which 
two prototypes of a system are tested concurrently with the incorporation of design changes.  
(The data in this example are used subsequently for one of the growth subsystems in the example 
for the AMSAA Subsystem Tracking Model - SSTRACK.)  The first prototype is tested for 
132.4 hours, and the second is tested for 167.6 hours for a total of T = 300 cumulative test hours.  
Table C-4 shows the time on each prototype and the cumulative test time at each failure 
occurrence.  An asterisk denotes the failed system.  There are a total of F = 27 failures.  Although 
the occurrence of two failures at exactly 16.5 hours is not possible under the assumption of the 
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model, such data can result from rounding and are computationally tractable using the statistical 
estimation procedures described previously for the model.  Note that the data are from a time 
terminated test. 
 

TABLE C-4.  TEST DATA FOR INDIVIDUAL FAILURE TIME OPTION 
(An asterisk denotes the failed system.) 

 
Failure 
Number 

Prot. #1 
Hours 

Prot. #2 
Hours 

Cum 
Hours 

Failure 
Number 

Prot. #1 
Hours 

Prot. #2 
Hours 

Cumulative 
Hours 

1 2.6* .0 2.6 15 60.5 37.6* 98.1 
2 16.5* .0 16.5 16 61.9* 39.1 101.1 
3 16.5* .0 16.5 17 76.6* 55.4 132.0 
4 17.0* .0 17.0 18 81.1 61.1* 142.2 
5 20.5 .9* 21.4 19 84.1* 63.6 147.7 
6 25.3 3.8* 29.1 20 84.7* 64.3 149.0 
7 28.7 4.6* 33.3 21 94.6* 72.6 167.2 
8 41.8* 14.7 56.5 22 104.8 85.9* 190.7 
9 45.5* 17.6 63.1 23 105.9 87.1* 193.0 

10 48.6 22.0* 70.6 24 108.8* 89.9 198.7 
11 49.6 23.4* 73.0 25 132.4 119.5* 251.9 
12 51.4* 26.3 77.7 26 132.4 150.1* 282.5 
13 58.2* 35.7 93.9 27 132.4 153.7* 286.1 
14 59.0 36.5* 95.5 End 132.4 167.6 300.0 

 
 By using the 27 failure times listed under the columns labeled “Cumulative Hours” in 
Table C-4 and by applying (16), (18), (19) and (21) we obtain the following estimates.  The point 
estimate for the shape parameter is 0.716 = β̂ ; the point estimate for the scale parameter is 

0.454 = λ̂ ; the estimated failure intensity at the end of the test is 0.0645 = (T)ρ̂  failures per 
hour; the estimated MTBF at the end of the 300-hour test is $m (T) = 15.5 hours.  As shown in 
Figure 3.4.2, superimposing a graph of the estimated intensity function [19] atop a plot of the 
average failure rate (using six 50-hour intervals) reveals a decreasing failure intensity indicative 
of reliability growth. 
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Figure 3.4.2 Estimated Intensity Function Superimposed On Average
   Failure Rate Plot From Observed Data  

 
 Using (22), Table C-1 and a confidence level of 90 percent, the two-sided interval 
estimate for the MTBF at the end of the test is [9.9, 26.1].  These results and the estimated 
MTBF tracking growth curve (substituting t for T in (21)) are shown in Figure 3.4.3. 
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 Finally, to test the model goodness-of-fit, a Cramér-von Mises statistic is compared to the 
critical value from Table C-3 corresponding to a chosen significance level α =  0.05  and total 
observed number of failures F = 27.  Linear interpolation is used to arrive at the critical value.  
Since the statistic, 0.091, is less than the critical value, 0.218, we accept the hypothesis that the 
AMSAA Continuous Reliability Growth Tracking Model is appropriate for this data set. 
 
Option for Grouped Data 
 

List of Notation 
 
  K  number of intervals (or groups) or the last group 
  i  interval number 
  t i   time at beginning (or end) of interval 
  Fi   observed number of failures in interval [ )t ti i−1,  
  tK   total test time 
  ^  denotes an estimate when placed over a parameter 
  β   shape parameter ( )β >  0  
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  λ   scale parameter ( )λ > 0  
  ( )ρ t   instantaneous failure intensity at time t 
  ( )m t   instantaneous MTBF at time t 
  MK   MTBF for the last group 
  EK   expected number of failures in the last group 
  ρK   failure intensity for the last group 
  F  total observed number of failures 
  L  lower confidence coefficient 
  U  upper confidence coefficient 
  γ  specified confidence level 
  Ei   expected number of failures in interval i 
  KR   number of intervals after recombination of intervals 
  Oi   observed number of failures in interval i 
  χ 2   chi-squared value 
 
 Reliability growth parameters can be estimated in accordance with the AMSAA 
Continuous Tracking Model even if the exact times of failure are unknown and all that is known 
is the number of failures that occurred in each interval of time, provided there are at least three 
intervals and at least two intervals have failures.  This case is referred to as the Option for 
Grouped Data.  This section describes the estimation procedures and goodness-of-fit procedures 
for analyzing such data and provides an example of model usage.  In the following discussion, 
the words “group” and “interval” are interchangeable. 
 
Estimation Procedures for Model 
 The required data consist of the total number of failures in each of K intervals of test 
time.  The first interval always starts at test time zero so that t = 00 .  The groups do not have to 
be of equal length.  The observed number of failures in the interval from ti−1  to ti  is denoted by 
Fi . 
 
Point Estimation 
 The method of maximum likelihood provides point estimates for the parameters of the 
model.  The maximum likelihood estimate for the shape parameter β  is the value that satisfies 
the following nonlinear equation: 
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in which t ln t0 0  is defined as zero. 
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By equating the total expected number of failures to the total observed number of failures: 
 

    ∑
K

1 = i
i

ˆ
K F= tˆ βλ       (27) 

 
and solving for $λ , we obtain an estimate for the scale parameter: 
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       (28) 

 
 Point estimates for the intensity function ρ (t)  and the mean time between failures 
function ( )m t  are calculated as in the previous section describing the Option for Individual 
Failure Time Data; that is, 
 

    ( ) ( )0> t,ˆ,ˆt̂ˆ=tˆ 1
^

βλβλρ β −    (29) 
    ( ) ( ) ( )0,ˆ,ˆˆˆ 1 >= − tttm βλρ    (30) 
 
 The functions in (29) and (30) provide instantaneous estimates that give rise to smooth 
continuous curves, but these functions do not describe the reliability growth that occurs on a 
configuration basis representative of grouped data.  Under the model option for grouped data, the 
estimate for the MTBF for the last group, $MK , is the amount of test time in the last group 
divided by the expected number of failures in the last group: 
 

    
K

KK
K E

tt
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=       (31) 

 
where the expected number of failures in the last group EK  is: 
 
    ( )ββλ ˆ

1
ˆˆ

−−= KKK ttE      (32) 
 
From (31) we obtain an estimate for the failure intensity for the last group: 
 

    
K

K M̂
1=ρ̂       (33) 

 
Interval Estimation 
 Lower confidence bounds and two-sided confidence intervals may be computed for the 
MTBF for the last group.  Using (31) and Table C-1, a two-sided confidence interval for MK  
may be calculated from: 
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    K  F,KK  F, M̂UMM̂L γγ ≤≤     (34) 
 
and using (31) and Table C-2, a one-sided interval estimate for MK  may be calculated from: 
 
     KK  F, MM̂L ≤γ       (35) 
 
where F is the total observed number of failures and γ is the desired confidence level. 
 
Goodness-of-Fit 
 A chi-squared goodness-of-fit test is used to test the null hypothesis that the AMSAA 
Continuous Reliability Growth Tracking Model adequately represents a set of grouped data.  The 
expected number of failures in the interval from ti−1  to ti  is approximated by: 
 
    ( )ββλ ˆ

1
ˆˆ

−−= iii ttE       (36) 
 
 Adjacent intervals may have to be combined so that the expected number of failures in 
any combined interval is at least five.  Let the number of intervals after this recombination be 
KR , and let the observed number of failures in the i-th new interval be Oi  and the expected 
number of failures in the i-th new interval be Ei .  Then the statistic: 
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is approximately distributed as a chi-squared random variable with KR − 2  degrees of freedom.  
The null hypothesis is rejected if the χ 2  statistic exceeds the critical value for a chosen 
significance level.  Critical values for this statistic can be found in tables of the chi-squared 
distribution. 
 
 Besides using statistical methods for assessing model goodness-of-fit, one should also 
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in 
Figure 3.4.2).  Derived from the failure data, these plots provide a graphic description of test 
results and should always be part of the reliability analysis. 
 
Example 
 The following example uses aircraft data to demonstrate the option for grouped data.  
(The data in this example are used subsequently for one of the growth subsystems in the example 
for the AMSAA Subsystem Tracking Model - SSTRACK.)  In this example, an aircraft has 
scheduled inspections at intervals of twenty flight hours.  For the first 100 hours of flight testing 
the results are: 
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TABLE C-5.  TEST DATA FOR GROUPED DATA OPTION 

 
 

Start Time 
 

End Time 
Observed Number of Failures 

0 20 13 
20 40 16 
40 60 5 
60 80 8 
80 100 7 

 
There are a total of F = 49 observed failures from K = 5 intervals.  Solution of (26) for β̂  yields 
an estimate of 0.753 for the shape parameter.  From (28) the scale parameter estimate is 1.53.  
For the last group, the intensity function estimate is 0.379 failures per flight hour and the MTBF 
estimate is 2.6 flight hours.  Table C-6 shows that those adjacent intervals do not have to be 
combined after applying (36) to the original intervals.  Therefore, K  =  5R . 
 

TABLE C-6.  OBSERVED VERSUS EXPECTED NUMBER OF FAILURES  
FOR TEST DATA FOR GROUPED DATA OPTION 

 
 

Start Time 
 

End Time 
Observed Number of 

Failures 
Expected Number of 

Failures 
0 20 13 14.59 
20 40 16 9.99 
40 60 5 8.77 
60 80 8 8.07 
80 100 7 7.58 

 
 To test the model goodness-of-fit, a chi-squared statistic of 5.5 is compared to the critical 
value of 7.8 corresponding to 3 degrees of freedom and a 0.05 significance level.  Since the 
statistic is less than the critical value, the applicability of the model is accepted. 
 

3.2.2  AMSAA Discrete Tracking Model. 
 

3.2.2.1  Background and Motivation for Model. 
 

List of Notation 
 
  t cumulative test time 
  K(t) cumulative number of failures by time t 
  c(t) cumulative failure rate by time t 
  ln natural logarithm function (base e) 
  δ constant term representing the y-intercept of a linear equation 
  α constant term representing the slope of a linear equation 
  λ scale parameter (λ > 0 ) of power function 
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  β shape parameter ( β > 0 ) of power function; β α= −1  
  i configuration number 
  iT  cumulative number of trials through configuration i 
  Σ summation of  
  iN  number of trials in configuration i 
  iK  cumulative number of failures through configuration i 
  iM  number of failures in configuration i 
  [ ]iKE  expected value of iK  
  if  probability of failure for configuration i 
  ig  probability of failure for trial i 
  iR  reliability for configuration i (or trial i) 
  ^ denotes an estimate when placed over a parameter 
 
 Reliability growth tracking methodology may also be applied to discrete data in a manner 
that is consistent with the learning curve property observed by J.T. Duane for continuous data.  
Accordingly, this section describes model development and maximum likelihood estimation 
procedures for assessing system reliability for one-shot systems during development. 
 
 The motivation for the AMSAA Discrete Reliability Growth Tracking Model comes from 
the learning curve approach for continuous data as follows. 
 
 Let t denote the cumulative test time, and let K(t) denote the cumulative number of 
failures by time t.  The cumulative failure rate, c(t), is the ratio: 
 

    ( ) ( )
t
tK

tc =       (38) 

 
While plotting test data from generators, hydro-mechanical devices and aircraft jet engines, 
Duane observed that the logarithm of the cumulative failure rate was linear when plotted against 
the logarithm of the cumulative test time: 
 
    tln=)tc(ln αδ −      (39) 
 
By letting λδ ln  =  for the y-intercept and by exponentiating both sides of (39), the cumulative 
failure rate becomes: 
 
    αλ −t=)tc(       (40) 
 
By substitution from (38), 
 

    
( ) αλ − t=
t
tK

      (41) 
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Multiplying both sides of (41) by t and letting β α= −1 , the cumulative number of failures by t 
becomes: 
 
    ( ) βλ t=tK       (42) 
 
This power function of t is the learning curve property for K(t), where λ β, > 0 . 
 

3.2.2.2  Model Development.  To construct the AMSAA Discrete Reliability Growth 
Tracking Model, we use the power function developed from the learning curve property for K(t) 
to derive an equation for the probability of failure on a configuration basis.  We refer to this 
situation where growth takes place on a configuration basis (and the number of trials in at least 
one of the configurations is greater than one) as the grouped data option.  In the presence of 
reliability growth, the failure probability trend for the grouped data option appears graphically as 
a sequence of decreasing, horizontal steps. 
 
 We then note the special case where the configuration size is one for all configurations, 
develop an equation for the probability of failure, and refer to this special case as the option for 
trial by trial data.  In a growth situation, the failure probability trend for this option is described 
graphically as a decreasing, smooth curve. 
 
 Model development proceeds as follows.  Suppose system development is represented by 
i configurations.  (This corresponds to i −1 configuration changes, unless fixes are applied at the 
end of the test phase, in which case there would be i configuration changes.)  Let Ni  be the 
number of trials during configuration i, and let M i  be the number of failures during 
configuration i.  Then the cumulative number of trials through configuration i, namely Ti , is the 
sum of the Ni  for all i: 
 
    ∑ ii N=T       (43) 
 
and the cumulative number of failures through configuration i, namely Ki , is the sum of the Mi  
for all i:   
 
    ∑ ii M=K       (44) 
 
 We express the expected value of K i  as [ ]E Ki  and define it as the expected number of 
failures by the end of configuration i.  Applying the learning curve property to [ ]E Ki  implies: 
 
    [ ] βλ ii T =KE       (45) 
 
 We introduce a term for the probability of failure for configuration one, namely f1 , and 
use it to develop a generalized equation for fi  in terms of the Ti  and N i .  From (45), the 
expected number of failures by the end of configuration one is: 
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Applying (45) again and noting that the expected number of failures by the end of configuration 
two is the sum of the expected number of failures in configuration one and the expected number 
of failures in configuration two, we obtain: 
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By this method of inductive reasoning we obtain a generalized equation for the failure 
probability, fi , on a configuration basis: 
 

    
i

1i
i N

T T 
=f

ββ λλ −− i      (48) 

 
and use (48) for the grouped data option. 
 
 For the special case where N  =  1i  for all i, (48) becomes a smooth curve, gi , that 
represents the probability of failure for the option for trial by trial data: 
 
    ( )ββ λλ 1g i −−= ii      (49) 
 
In (49), i represents the trial number.  Note that T = 00 , so that (48) reduces to (46) when i = 1.  
Also, for i = 1 in (49), g =1 λ .  Using (48) we obtain an equation for the reliability (probability 
of success) for the i-th configuration: 
 
    ii fR −= 1        (50) 
 
and using (49) we obtain an equation for the reliability for the i-th trial: 
 
    ii gR −= 1        (51) 
 
Equations (48), (49), (50) and (51) are the exact model equations for tracking the reliability 
growth of discrete data using the AMSAA Discrete Reliability Growth Tracking Model. 
 

3.2.2.3  Estimation Procedures.  This section describes procedures for estimating the 
parameters of the AMSAA Discrete Reliability Growth Tracking Model.  It also includes an 
approximation equation for calculating reliability lower confidence bounds and an example 
illustrating these concepts. 
 
 The estimation procedures described below provide maximum likelihood estimates 
(mle’s) for the model’s two parameters, λ and β, where λ is the scale parameter and β is the 
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shape (or growth) parameter.  The mle’s for λ and β allow for point estimates for the probability 
of failure: 
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and the probability of success (reliability): 
 

    ii fR ˆ1ˆ −=        (53) 
 
for each configuration i. 
 
Point Estimation 
 Exact mle’s for λ and β are values satisfying the following two equations: 
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and 
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From (54) and (55) we note the following data requirements for using the model: 
 

Data Requirements 
 
  K number of configurations (or the final configuration) 
  iM  number of observed failures for configuration i 
  iN  number of trials for configuration i 
  iT  cumulative number of trials through configuration i 
 
Interval Estimation 
 A one-sided interval estimate (lower confidence bound) for the reliability of the final 
(last) configuration may be obtained from the approximation equation: 
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where 
 

LCBγ  = a lower confidence bound at the gamma (γ) confidence level for 
the reliability of the last configuration, where γ is a decimal 
number in the interval (0,1) 

 KR̂  = a maximum likelihood estimate for the reliability of the last 
configuration 

n = the total number of observed failures (summed) over all 
configurations i, (i = 1..K) 

 χγ ,n+2
2  = the gamma percentile point of the chi-squared distribution with 

n+2 degrees of freedom 
 

3.2.2.4  Goodness-of-Fit.  Provided there is sufficient data to obtain at least five expected 
number of failures per group, a chi-squared goodness-of-fit test may be used to test the null 
hypothesis that the AMSAA Discrete Reliability Growth Tracking Model adequately represents 
a set of grouped discrete data or a set of trial by trial data.  If these conditions are met, then one 
may use the chi-squared goodness-of-fit procedures outlined previously for the Continuous 
Reliability Growth Tracking Model. 
 
 Besides using statistical methods for assessing model goodness-of-fit, one should also 
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in 
Figure 3.4.2).  Derived from the failure data, these plots provide a graphic description of test 
results and should always be part of the reliability analysis. 
 

3.2.2.5  Example.  The following example is an application of the grouped data option of 
the AMSAA Discrete Reliability Growth Tracking Model for a system having four 
configurations of development test data: 
 

TABLE C-7. TEST DATA FOR GROUPED DATA OPTION 
 

 
 

Configuration 
Number, I 

K = 4 

 
Observed Number 

of Failures in 
Configuration i 

iM  

 
 

Number of Trials in 
Configuration i 

iN  

Cumulative Number 
of Trials Through 
Configuration i 

iT  

1 5 14 14 
2 3 19 33 
3 4 15 48 
4 4 20 68 
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This is represented graphically as: 
 

(M1 = 5) (M2 = 3) (M3 = 4) (M4 = 4)

(N1 = 14) (N2 = 19) (N3 = 15) (N4 = 20)0 14 33 48 68

T1 T2 T3 T4

Figure 3.5  Test Data for Grouped Data Option  
 
 The solution of (54) and (55) provides mle’s for λ and β corresponding to 0.595 and 
0.780, respectively.  Using (52) and (53) results in the following table: 
 
 
 

TABLE C-8. ESTIMATED FAILURE RATE AND ESTIMATED RELIABILITY BY 
CONFIGURATION 

 
 
 

Configuration Number, i 
K = 4 

Estimated Failure 
Probability for 
Configuration i 

if̂  

 
Estimated Reliability for 

Configuration i 

iR̂  
1 .333 .667 
2 .234 .766 
3 .206 .794 
4 .190 .810 
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 A plot of the estimated failure rate by configuration is: 
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Figure 3.6  Estimated Failure Rate by Configuration  
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and a plot of the estimated reliability by configuration is: 
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Figure 3.7  Estimated Reliability by Configuration  
 
Finally, (56) is used to generate the following table of LCB’s for the reliability of the last 
configuration: 
 

TABLE C-9. TABLE OF LOWER CONFIDENCE BOUNDS (LCB’S) FOR FINAL 
CONFIGURATION 

 
Confidence Level LCB 

.50 .806 

.75 .783 

.80 .777 

.90 .761 

.95 .747 
 
3.3 Subsystem Level Reliability Growth Tracking Models. 
 

3.3.1  AMSAA SSTRACK Model Description and Conditions For Usage.  The 
AMSAA Subsystem Tracking Model (SSTRACK) is a tool for assessing system level reliability 
from lower level test results.  The methodology was developed to make greater use of component 
or subsystem test data in estimating system reliability.  By representing the system as a series of 
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independent subsystems, the methodology permits an assessment of the system level 
demonstrated reliability at a given confidence level from the subsystem test data.  This system 
level assessment is permissible provided the: 
 

• subsystem test conditions/usage are in conformance with the proposed system level 
operational environment (as embodied in the Operational Mode Summary/Mission 
Profile [OMS/MP]) and  

 
• Failure Definitions/Scoring Criteria (FD/SC) formulated for each subsystem are 

consistent with the FD/SC used for system level test evaluation. 
 
 The SSTRACK methodology supports a mix of test data from growth and non-growth 
subsystems.  For growth subsystems, the model uses test results in the form of either individual 
failure times or grouped data.  Statistical goodness-of-fit procedures are used for assessing model 
applicability for growth subsystem test data.  For non-growth subsystems, the model uses fixed 
configuration test data in the form of the total test time and the total number of failures.  The 
model applies the Lindström-Madden method [4] for combining the test data from the individual 
subsystems.  Twenty-five subsystems can be represented by the current implementation of the 
model.  SSTRACK is a continuous model, but it may be used with discrete data if the number of 
trials is large and the probability of failure is small. 
 
 A potential benefit of this methodology is that it may allow for reduced system level 
testing by combining lower level subsystem test results in such a manner that system reliability 
may be demonstrated with confidence.  Another potential benefit is that it may allow for an 
assessment of the degree of subsystem test contribution toward demonstrating a system 
reliability requirement.  Finally, as mentioned, it may serve as an effective means of combining 
test data from dissimilar sources, namely growth and non-growth subsystems. 
 
 Besides the two provisos stated in the opening paragraph regarding OMS/MP 
conformance and FD/SC consistency, a caveat in using the methodology is that high-risk 
subsystem interfaces should be identified and addressed through joint subsystem testing.  Also, 
as in any reliability growth test program, growth subsystem configuration changes must be 
properly documented for the methodology to provide meaningful results. 
 
 The primary output from the SSTRACK computer implementation is a table of lower 
confidence bounds for the system reliability (MTBF) for a range of confidence levels. 
 

3.3.2  Methodology. 
 
LIST OF NOTATION 
 
 ∧ denotes an estimate when placed over a parameter 
 M Mean Time Between Failures (MTBF) 
 D demonstration 
 G growth 
 LCB Lower Confidence Bound 
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 γ gamma = confidence level 
 T (total) test time 
 N (total) number of failures 
 χ γdf ,

2  chi-squared percentile point for df degrees of freedom and γ 
  confidence 
 β beta = growth parameter from reliability growth tracking model 
 
 To be able to handle a mix of test data from growth and non-growth subsystems, the 
methodology converts all growth subsystem test data to its “equivalent” amount of 
demonstration test time and “equivalent” number of demonstration failures so that all subsystem 
results are expressed in a common format; namely, in terms of fixed configuration (non-growth) 
test data.  By treating growth subsystem test data in this way, a standard lower confidence bound 
formula for fixed configuration test data may be used to compute the system reliability lower 
confidence bound for the combination of growth and non-growth data.  The net effect of this 
conversion process is that it reduces all growth subsystem test data to “equivalent” 
demonstration test data while preserving the following two important equivalency properties: 
 
 The “equivalent” demonstration data estimators and the growth data estimators must 
yield:  
 
 
  (1) the same subsystem MTBF point estimate and 
 
  (2) the same subsystem MTBF lower confidence bound. 
 
In other words, the methodology maintains the following relationships, respectively: 
 

   GD MM ˆˆ =        (57) 
 

   ( ) ( )GLCBDLCB γγ =      (58) 
 
where 
 

   
D

D
D N

TM =ˆ       

 (59) 
 

   ( )
2

,22

2

γ
γ χ +

=
DN

DT
DLCB      (60) 

 
 Reducing growth subsystem test data to “equivalent” demonstration test data using the 
following equations closely satisfies the relationships cited above: 
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2

G
D

N
N =        (61) 

 

   
β̂22

ˆ GG
GD

TNMT =×=      (62) 

 
The growth estimate for the MTBF, GM̂ , and the estimate for the growth parameter, β̂ , are 
described in the sections on point estimation for system level Continuous Reliability Growth 
Tracking Models. 
 
 The model then uses the above equations to compute an approximate lower confidence 
bound for the serial system reliability (MTBF) from non-growth subsystem demonstration data 
and growth subsystem “equivalent” demonstration data as described in the following section on 
the Lindström-Madden method. 
 

3.3.3  Lindström-Madden Method.  In addition to using the notation defined in the 
previous section on Methodology, subsequent equations use the following notation: 
 

LIST OF NOTATION 
 
  sys system level 
  min minimum of 
  K number of subsystems in serial system 
  ρ failure rate 
  i subscript for subsystem number 
  Σ summation of 
 
 To compute an approximate lower confidence bound (LCB) for the system MTBF from 
subsystem demonstration and “equivalent” demonstration data, the AMSAA SSTRACK model 
uses an adaptation of the Lindström-Madden method by computing the following four estimates: 
 

1. the equivalent amount of system level demonstration test time.  (This estimate is a 
reflection of the least tested subsystem because it is the minimum demonstration test 
time of all the subsystems.), 

 
2. the current system failure rate, which is the sum of the estimated failure rate from 

each subsystem i, i = 1..K, 
 

3. the “equivalent” number of system level demonstration failures, which is the product 
of the previous two estimates, and 

 
4. the approximate LCB for the system MTBF at a given confidence level, which is a 

function of the equivalent amount of system level demonstration test time and the 
equivalent number of system level demonstration failures. 
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 In equation form, these system level estimates are, respectively: 
 

   KiforTT iDsysD ..1min ,, ==    (63) 
 

   ∑
=

=
K

i
isys

1

ˆˆ ρρ       (64) 

 
where 
 

   
iD

i M ,
ˆ
1ˆ =ρ        (65) 

 
isubsystemforestimateMTBFcurrenttheM iD =,

ˆ  
 

   sysDsyssysD TN ,, ˆ ×= ρ      (66) 
 

   
2

,22

,

,

2

γ
γ χ +

=
sysDN

sysDT
LCB      (67) 

 
3.3.4  Example.  The following example is an application of the AMSAA Subsystem 

Level Reliability Growth Tracking Model to a system composed of three subsystems: one non-
growth and two growth subsystems.  Of the two growth subsystems, one has data recorded in the 
form of individual cumulative failure times, and the other has grouped failure data.  Besides 
showing that SSTRACK can be used for test data gathered from dissimilar sources (namely, non-
growth and growth subsystems), this particular example was chosen to show that system level 
reliability estimates are influenced by - 
 

• the least tested subsystem and 
 

• the least reliable subsystem, that is, the subsystem with the largest failure rate. 
 
 Subsystem 1 in this example is a non-growth subsystem consisting of fixed configuration 
data of 8,000 hours of test time and 2 observed failures. 
 
 Subsystem 2 is a growth subsystem with individual failure time data.  In 300 hours of test 
time there were 27 observed failures occurring at the following cumulative times: 2.6, 16.5, 16.5, 
17.0, 21.4, 29.1, 33.3, 56.5, 63.1, 70.6, 73.0, 77.7, 93.9, 95.5, 98.1, 101.1, 132.0, 142.2, 147.7, 
149.0, 167.2, 190.7, 193.0, 198.7, 251.9, 282.5 and 286.1. 
 
 Subsystem 3 is a growth subsystem with failure data from five groups.  At least 3 groups 
are required for goodness-of-fit purposes for this model.  Although this subsystem has an equal 
amount of test time in each group, unequal test times are also permissible. 
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TABLE C-10. SUBSYSTEM 3 TEST DATA 
 

Group 
Number 

Start and End Time Test Time 
in Group 

Observed Number 
of Failures 

1   0    20 20 13 
2 20    40 20 16 
3 40    60 20 5 
4 60    80 20 8 
5 80  100 20 7 
   Total = 49 

 
 The following table shows the pertinent statistics for each subsystem i.  It is here that all 
growth (G) subsystem test data are reduced to equivalent demonstration (D) test data. 

 
TABLE C-11. SUBSYSTEM STATISTICS 

 
Statistics 
(i = 1,2,3) 

Subsystem 1 
(Non-growth) 

Subsystem 2 
(Growth) 

Subsystem 3 
(Growth) 

iGT ,  N/A 300 100 

iGN ,  N/A 27 49 

iGM ,
ˆ  N/A 15.511 2.639 

N
N

D i
G i

,
,=

2
 

2 13.5 24.5 

iDiGiD NMT ,,,
ˆ ×=  8000 209.4 64.7 

iD

iD
iGiD N

T
MM

,

,
,,

ˆˆ ==  
 

4000               
 

15.511 
 

2.639 

iD
i M ,

ˆ
1ˆ =ρ  

 
2.50 x 10-4 

 
6.45 x 10-2 

 
3.79 x 10-1 

 
 System level statistics are computed by applying the Lindström-Madden method to the 
equivalent demonstration data from each subsystem. 
 
   ( ) 7.64min 3,2,1,, == =iiDsysD TT     (68) 
 

   1
3

1

1044.4ˆˆ −

=

×== ∑
i

isys ρρ     (69) 

 

   25.2
ˆ
1ˆ

, ==
sys

sysDM
ρ

     (70) 
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   7.28ˆ,, =×= syssysDsysD TN ρ     (71) 
 

  
( ) ( )%8089.1
2
2

80.,22

,
80.

,

==
×

=
+

levelconfidence
T

LCB
sysDN

sysD

χ
 (72) 

 
 Finally, a table of lower confidence bounds is shown for the system reliability (MTBF) 
for a range of confidence levels. 
 

TABLE C-12. SYSTEM LOWER CONFIDENCE BOUNDS (LCB’S) 
 

Confidence Level 
(in percent) 

 
LCB for System MTBF 

50 2.20 
55 2.15 
60 2.10 
65 2.05 
70 2.00 
75 1.95 
80 1.89 
85 1.83 
90 1.76 
95 1.65 
98 1.54 
99 1.48 
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4.  RELIABILITY GROWTH PROJECTION 
 
4.1 Reliability Projection Concepts and Methodology.  The reliability growth 
process applied to a complex system undergoing development involves surfacing failure 
modes, analyzing the modes, and implementing corrective actions (termed fixes) to the 
surfaced modes.  In such a manner, the system configuration is matured with respect to 
reliability.  The rate of improvement in reliability is determined by (1) the on-going rate 
at which new problem modes are being surfaced, (2) the effectiveness and timeliness of 
the fixes, and (3) the set of failure modes that are addressed by fixes. 
 
 At the end of a test phase, program management usually desires an assessment of 
the system’s reliability associated with the current configuration.  Often, the amount of 
data generated from testing the current system configuration is severely limited.  In such 
circumstances, if the failure data generated over a number of system configurations is 
consistent with a reliability growth model, we can pool the data over the tested 
configurations to estimate the parameters of the growth model.  This in turn will yield a 
reliability tracking curve that gives estimates of the configuration reliabilities.  The 
resulting assessment of the system’s current reliability is called a demonstrated estimate 
since it is based solely on test data. 
 
 If the current configuration is the result of applying a group of fixes to the 
previous configuration, there could be a statistical lack of fit in tracking reliability growth 
between the previous and current configurations.  In such a situation it may not be valid 
to use a reliability growth tracking model to pool configuration data to assess the 
reliability of the current configuration.  We always have the option of estimating the 
current configuration reliability based only on failure data generated for this 
configuration.  However, such an estimate may be poor if little test time has been 
accumulated since the group of fixes was implemented.  In this situation, program 
management may wish to use a reliability projection method.  Such methods are typically 
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based on assessments of the effectiveness of corrective actions and failure data generated 
from the current and previous configurations. 
 
 A second situation in which a reliability projection is often utilized is when a 
group of fixes are scheduled for implementation at the end of the current test phase, prior 
to commencing a follow-on test phase.  Program management often desires a projection 
of the reliability that will be achieved by implementing the delayed fixes.  This type of 
projection can be based solely on the current test phase failure data and engineering 
assessments of the effectiveness of the planned fixes.  The Crow/AMSAA model in 
Section 4.3 or the AMSAA Maturity Projection Model (AMPM) discussed in Section 4.4 
can be used to obtain such projections. 
 
 The current test phase could consist of several system configurations if not all the 
fixes to surfaced problem modes are delayed.  In this instance we can still obtain a 
projection of the reliability with which the system will enter the follow-on test by using 
the AMPM. 
 
 Another situation in which a projection can be useful is in assessing the 
plausibility of meeting future reliability milestones, i.e., milestones beyond the 
commencement of the follow-on test.  The AMPM can provide such projections based on 
failure data generated to date and fix effectiveness assessments for all implemented and 
planned fixes to surfaced problem modes. 
 
 In Section 4.2 we present several basic concepts used in connection with our 
reliability projection models.  We also establish notation and present assumptions that are 
used throughout this section.  Notation and assumptions directed toward a particular 
method are introduced in the corresponding section. 
 
 In Sections 4.3 and 4.4 we present two reliability projection models and 
associated statistical procedures.  In Section 4.3 we discuss the Crow/AMSAA model.  
This model is used to estimate the system failure intensity at the beginning of a follow-on 
test phase based on information from the previous test phase.  This information consists 
of problem mode first occurrence times, the number of failures associated with each 
problem mode, and the total number of failures due to modes that will not be addressed 
by fixes.  Additionally, the projection uses engineering assessments of the planned 
corrective actions to problem modes surfaced during the test phase.  The associated 
statistical estimation procedure assumes that all the corrective actions are implemented at 
the end of the current test phase but prior to commencing the follow-on test phase.  This 
model addresses the continuous case, i.e., where test duration is measured in a continuous 
fashion such as in hours or miles. 
 
 In Section 4.4 we present another reliability projection model that addresses the 
continuous case.  This model is called the AMSAA Maturity Projection Model – 
Continuous (AMPM-Continuous).  The model can be applied to the situation where one 
wishes to utilize test data generated over one or more test phases to project the impact of 
fixes to surfaced problem failure modes.  The model does not require that the fixes be all 
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delayed to the end of the current test phase.  It only assumes the fixes are implemented 
prior to the time at which a projection is desired.  Also, projections may be made for 
milestones beyond the start of the next test phase.  The section contains an example 
application of the AMPM. 
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4.2 Basic Concepts, Notation and Assumptions.  Throughout this section we shall 
regard a potential failure mode as consisting of one or more potential failure sites with 
associated failure mechanisms.  Fixes are often applied to failure modes surfaced through 
testing.  As in [Reference 1], we shall define a B-mode to be a failure mode we would 
apply a fix to if the mode were surfaced.  All other failure modes will be referred to as A-
modes.  A surfaced mode might be regarded as an A-mode if (1) a fix is not economically 
justifiable, or (2) the underlying failure mechanisms associated with the mode are not 
sufficiently understood to attempt a fix.  Thus the rate of failure due to the set of A-
modes is constant as long as the failure modes are not reclassified. 
 
 For a surfaced B-mode, the rate of occurrence would hopefully diminish after 
implementing a fix to the mode.  However, in general, we cannot expect the mode rate of 
occurrence to drop to zero.  Fixes are seldom perfect; for example, our fix may not 
eliminate all the potential failure mechanisms associated with the B-mode.  Thus, for 
each B-mode, say mode i, we associate a fix effectiveness factor (FEF), denoted by id .  
The FEF id  is the fraction by which the initial rate of occurrence of mode i is reduced 
due to the fix.  The assessed values for the id  of surfaced B-modes are often based 
largely on engineering judgement.  This is why the corresponding reliability assessment 
is termed a “projection” as opposed to a “demonstrated value” that is based solely on the 
test data. 
 
List of Notation: 
 
 K Number of potential B-modes that reside in the system 
 iλ  Initial rate of occurrence of B-mode I ( )Ki ,,1 L=  
 Aλ  Contribution of A-modes to system failure intensity 
 Bλ  B-mode contribution to initial system failure intensity 

T Total duration of conducted test.  Typically measured in hours or miles. 
 AN  Number of A-mode failures that occur over [0,T] 
 BN  Number of B-mode failures that occur over [0,T] 
 m Number of distinct B-modes surfaced over [0,T] 

( )tM  Random variable of number of distinct B-modes surfaced by test duration 
t 

 ( )tµ  The expected value of ( )tM  
 it  Time of first occurrence of B-mode i ( )Ki ,,1 L=  
 t  Vector of B-mode first occurrence times ( )mtt ,,1 L  
 iN  Number of failures associated with B-mode i that occurs during test 

id  Fix effectiveness factor (FEF) for B-mode i.  The factor id  is the fraction 
of iλ  removed by the fix. 

 dµ  Arithmetic average of the id , i.e., ( )∑
=

K

i
idK

1

1  

obs The index set associated with the m  B-modes that are surfaced during test 
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 E Expectation operator 
 V Variance operator 
 mle Maximum likelihood estimator 
 ^ When placed over a parameter, it denotes an estimate 
 ~ “Distributed as” 

≈ “Approximated by” 
≅ “Approximately equal to” 

 
Assumptions: 
 

1. At the start of test, there is a large unknown constant number, denoted by K, 
of potential B-modes that reside in the system (which could be a complex 
subsystem). 

 
2. Failure modes (both types A and B) occur independently. 

 
3. Each occurrence of a failure mode results in a system failure. 

 
4. No new modes are introduced by attempted fixes. 

 
Additional notation and assumptions germane to a particular model will be 

introduced in the section dealing with the model. 
 
4.3 Crow/AMSAA Reliability Projection Model. 
 

4.3.1  Introduction.  In this section we shall consider the case where all fixes to 
surfaced B-modes are implemented at the end of the current test phase prior to 
commencing a follow-on test phase.  Thus all fixes are delayed fixes.  The current test 
phase will be referred to as Phase I and the follow-on test phase as Phase II. 
 
 The Crow/AMSAA reliability projection model and associated parameter 
estimation procedure was developed to assess the reliability impact of a group of delayed 
fixes.  In particular, the model and estimation procedure allow assessment of what the 
system failure intensity will be at the start of Phase II after implementation of the delayed 
fixes.  Denoting this failure intensity by r(T), where T denotes the duration of Test Phase 
I, the Crow/AMSAA assessment of r(T) is based on: (1) the A and B mode failure data 
generated during Phase I test duration T; and (2) assessments of the fix effectiveness 
factors (FEFs) for the B-modes surfaced during Phase I.  Since the assessments of the 
FEFs are often largely based on engineering judgement, the resulting assessment, ( )Tr̂ , 
of the system failure intensity after fix implementations is called a reliability projection 
as opposed to a demonstrated assessment (which would be based solely on test data). 
 
 The Crow/AMSAA projection model and estimation procedure was motivated by 
the desire to replace the widely used “adjustment procedure.”  The adjustment procedure 
assessed r(T) based on reducing the number of failures iN  due to B-mode i during Phase 
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I to ii Nd 







− *1 , where *

id  is the assessment of id .  Note ( ) ii Nd *1−  is an assessment of 

the expected number of failures due to B-mode i that would occur in a follow-on test of 
the same duration as Phase I.  The adjustment procedure assesses r(T) by ( )Tradjˆ  where 
 
 

   ( )
T

Nd

T
N

Tr
i

obsi
i

A
adj

∑
∈









−

+=

*1
ˆ     (1) 

 
 
 Crow[1] shows that even if the assessed FEFs are equal to the actual id , the 
adjustment procedure systematically underestimates r(T).  This bias, i.e., 
 
   ( ) ( ) ( ){ } 0ˆ >−= TrTrETB adj     (2) 
 
is calculated in [1] by considering the random set of B-modes surfaced during Phase I.  In 
particular, the adjustment procedure is shown to be biased since it fails to take into 
account that, in general, not all the B-modes will be surfaced by the end of Phase I.  
Before discussing how the Crow/AMSAA methodology addresses this bias we shall list 
some additional notation and assumptions associated with the Crow/AMSAA model. 
 

4.3.2  Crow/AMSAA Model Notation and Additional Assumptions. 
 
List of Notation: 
 
 T Length of Test Phase I 

r(T) System failure intensity at beginning of Test Phase II after implementation 
of delayed B-mode fixes.  Viewed as a random variable whose value is 
determined by the set of B-modes surfaced during Test Phase I and the 
associated fix effectiveness factors. 

( )Tρ  Expected value of r(T) with respect to random set of B-modes surfaced in 
Test Phase I, conditioned on the fix effectiveness factor values.  We write 
( ) ( )( ).TrET =ρ  

( )Tradjˆ  Adjustment procedure assessment of the value taken on by r(T) 
B(T) Bias incurred by assessing the value of r(T) by ( )Tradjˆ   Thus, 

( ) ( ) ( ){ }TrTrETB adjˆ−=  

GPρ  Growth potential system failure intensity 

GPM  Growth potential system MTBF, i.e., ( ) 1−= GPGPM ρ  
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( )th  Expected rate of occurrence of new B-modes at test duration t.  Note:

 ( ) ( )
td
td

th
µ

=  

( ) ( ) ( )ttrth ccc ρ,,  Crow/AMSAA model approximations to ( )th , r(t), ( )tρ  
respectively 

( ) ( )TMTM c,   Denote ( )( ) 1−Tρ  and ( )( ) 1−Tcρ  respectively 
 
Additional Assumptions for Crow/AMSAA: 
 

1. The time to first occurrence is exponentially distributed for each failure mode. 
 

2. No fixes to B-modes are implemented during Test Phase I.  Fixes to all B-
modes surfaced during Phase I are implemented prior to Phase II. 

 
3. The fix effectiveness factors (FEFs) id , obsi∈ , associated with the B-modes 

surfaced during Phase I are realized values of a set of random variables 
{ }obsiDi ∈|  where: 

(a) The iD  are independent; 
(b) The iD  have common mean value dµ ; and 
(c) The iD  are independent of ( )TM . 

 
4. The random process for the number of distinct B-modes that occur over test 

interval [ ]t,0 , i.e. ( )tM , is well approximated by a non-homogeneous Poisson 
process with mean value function ( ) βλµ ttc =  for some .0, >βλ  

 
4.3.3  Crow/AMSAA Model Equations and Estimation Procedure.  The 

Crow/AMSAA model assesses the value of the system failure intensity, r(T), after 
implementation of the Phase I delayed fixes.  This assessment is taken to be an estimate 
of the expected value of r(T), i.e., an estimate of ( ) ( )( ).TrET =ρ   In [1] (and in section 
4.4.3) it is shown that: 
 

( ) ( ) ∑∑
=

−

=

+−+=
K

i

T
ii

K

i
iiA

ieddT
11

1 λλλλρ   (3) 

 
The traditional adjustment procedure assessment for the value of r(T) is actually an 
estimate of  
 

    ( )∑
=

−+
K

i
iiA d

1

1 λλ  

 
since as shown later in this subsection 
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   ( )( ) ( )∑
=

−+=
K

i
iiAadj dTrE

1

*1ˆ λλ     (4) 

 
where *

id  is an assessment of id .  Thus, by (3) and (4), the adjustment procedure has the 
bias B(T) where 
 
    ( ) ( ) ( ){ }TrTrETB adjˆ−=  
 
     ( ) ( )( )TrET adjˆ−= ρ  
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It follows that for ii dd =*  ( )Ki ,,1L=  
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λλ      (5) 

 
This shows that even with perfect knowledge of the id  (i.e., when ii dd =* ), the 
adjustment procedure provides a biased underestimate of the value of r(T).  The 
Crow/AMSAA procedure attempts to reduce this bias by estimating B(T) given by (5). 
 
 To estimate B(T), the Crow/AMSAA Model uses an approximation to B(T).  This 
approximation is obtained in two steps.  The first step is to regard the id  in (5) as 
realizations of random variables iD  ( )Ki ,,1L=  that satisfy assumption number 3 in the 
“Additional Assumptions for Crow/AMSAA.”  Then B(T) is approximated by the 
expected value (with respect to the iD ) of 
 

    ∑
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−
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T
ii

ieD
1

λλ  

 
Thus the initial approximation arrived at for B(T) in (5) is 
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where ( )id DE=µ  ( )Ki ,,1L= .  The final step to obtain the Crow/AMSAA 
approximation of B(T) is to replace the sum 
 

    ∑
=

−
K

i

T
i

ie
1

λλ  

 
in (6) by a two parameter function of T.  The Crow/AMSAA Model replaces this sum by 
the power function 
 
   ( ) 1−= ββλ TThc    0, >βλfor  
 (7) 
 
The form in (7) is chosen based on the desire for a mathematically tractable estimation 
problem and an empirical observation.  Based on an empirical study, Crow [1] states that 
the number of distinct B-modes surfaced over a test period [ ]t,0  can often be 
approximated by a power function of the form 
 
   ( ) βλµ ttc =    0, >βλfor  
 (8) 
 
In (8), Crow [1] interprets ( )tcµ  as the expected number of distinct B-modes surfaced 
during the test interval [ ]t,0 .  More specifically, [1] assumes the number of distinct B-
modes occurring over [ ]t,0  is governed by a non-homogeneous Poisson process with 

( )tcµ  as the mean value function.  Thus 
 

   ( ) ( ) 1−== ββλ
µ

t
td

td
th c

c     (9) 

 
represents the expected rate at which new B-modes are occurring at test time t. 
 
 In Annex 1 of Appendix D, under the previously stated assumptions, it is shown 
that the expected number of distinct B-modes surfaced over [ ]t,0  is given by 
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i

tiet
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Thus the expected rate of occurrence of new B-modes at test time t is 
 

   ( ) ( ) ∑
=

−==
K

i

t
i

ie
td
tdth

1

λλµ     (11) 
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Equation (11) shows that the initial approximation to the bias B(T), given in (6) can be 
expressed as 
 
   ( ) ( )ThTB dµ≈       (12) 
 
By replacing h(T) in (12) by ( )Thc  given in (9), we arrive at the final Crow/AMSAA 
Model approximation to B(T), namely 
 
    ( ) ( )ThTB cdc µ=  
 
    1−= ββλµ Td      (13) 
 
 Returning to our expression in (3) for the expected value of the system failure 
intensity after incorporation of the Phase I delayed fixes, i.e., ( ) ( )( ).TrET =ρ , we can 
now write down the Crow/AMSAA Model approximation for ( )Tρ .  This 
approximation, by (13), is given by: 
 

    ( ) ( ) ( )TBdT c

K

i
iiAc +−+= ∑

=1

1 λλρ  

 

    ( ) ( )∑
=

−+−+=
K

i
diiA Td

1

11 ββλµλλ   (14) 

 
 We shall next consider the Crow/AMSAA procedure for estimating ( )Tcρ .  This 
estimate is taken as the assessment of the system failure intensity after incorporation of 
the delayed fixes. 
 
 Consider the first term in the expression for ( )Tcρ  given in (14), i.e., Aλ .  Since 
the A-modes are not fixed, the A-mode failure rate Aλ  is constant over [0,T].  Thus we 
simply estimate Aλ  by 
 

   
T

N A
A =λ̂        (15) 

 
where AN  is the number of A-mode failures over [0,T].  Note 
 

   ( ) ( )
A

AA
A T

T
T
NE

E λ
λ

λ ===ˆ    (16) 

 
 Next consider estimation of the summation 
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    ( )∑
=

−
K

i
iid

1

1 λ  

 
in the expression for ( )Tcρ .  By the second assumption in the “Additional Assumptions 
for Crow/AMSAA,” all fixes are delayed until Test Phase I has been completed.  This 
implies the failure rate for B-mode i ( )Ki ,,1L=  remains constant over [0,T].  Thus we 
simply estimate iλ  by 
 

   ( )Ki
T
Ni

i ,,1ˆ L==λ     (17) 

 
where iN  denotes the number of failures during [0,T] attributable to B-mode i.  Note 
 

   ( ) ( )
i

ii
i T

T
T
NE

E λ
λ

λ ===ˆ    (18) 

 
 Equations (16) and (18) suggest we assess 
 

    ( )∑
=

−+
K

i
iiA d

1

1 λλ  

 
by 
 

    ( ) ( )∑
=

−+=
K

i
iiAadj dTr

1

* ˆ1ˆˆ λλ  
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






−+=
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i
i

A

T
N

d
T

N

1

*1     (19) 

 
Observe 0=iN  if B-mode i does not occur during [0,T].  Thus 
 

   ( ) ( )∑
∈








−+=
obsi

i
i

A
adj T

N
d

T
N

Tr *1ˆ     (20) 

 
where obs = {i | B-mode i occurs during [0,T]}.  Note the adjustment procedure estimate 
has the form 
 

   ( )
T
NTradj

*

ˆ =       (21) 

 
where 
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   ( )∑

∈

−+=
obsi

iiA NdNN ** 1     

 (22) 
 
is the “adjusted” number of failures. 
 
 For given fix effectiveness factor (FEF) assessments, *

id , note that 
 

    ( )( ) ( ) ( ) ( )







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−
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iiAadj NEdNETTrE
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*1 1ˆ  
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=

−
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i
iiA TdTT

1

*1 1 λλ  

 

     ( )∑
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−+=
K

i
iiA d

1

*1 λλ    (23) 

 
Thus, as stated earlier, we see that the adjustment procedure estimate only provides an 
assessment for a portion of the expected system failure intensity, namely 
 

    ( )∑
=

−+
K

i
iiA d

1

1 λλ  

 
 Returning to the fundamental equation for the Crow/AMSAA Model 
approximation to the expected system failure intensity, i.e. (14), 
 

    ( ) ( ) ( )∑
=

−+−+=
K

i
diiAc TdT

1

11 ββλµλλρ  

 
Let us next consider the assessment of the fix effectiveness factors id .  The assessment 

*
id  will often be based largely on engineering judgement.  The value chosen for *

id  should 
reflect several considerations: 
(1) How certain we are that the root cause for B-mode i has been correctly identified; (2) 
the nature of the fix, e.g., its complexity; (3) past FEF experience; and (4) any germane 
testing (including assembly level testing). 
 
 Note that (20) shows that we need only assess FEFs for those B-modes that occur 
during [0,T] to make an assessment of 
 

    ( )∑
=

−+
K

i
iiA d

1

1 λλ  
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 To assess the mean FEF, ( )id DE=µ , we utilize our assessments *

id  for obsi∈ .  
Let m  be the number of distinct B-modes surfaced over [0,T].  Then we assess dµ  by 
 

   ∑
∈

=
obsi

id d
m

** 1µ       (24) 

 
 To complete our assessment of the expected system failure intensity after 
incorporation of delayed fixes, we shall now address the assessment of 
 
    ( ) 1−= ββλ TThc  
 
To develop a statistical estimation procedure for λ and β, the Crow/AMSAA Model 
regards the number of distinct B-modes occurring in an interval [0,t], denoted by ( )tM , 
as a random process.  The model assumes that this random process can be well 
approximated, for large K, by a non-homogeneous Poisson process with mean value 
function 
 
    ( ) ( )( ) βλµ ttMEtc ==  
 
where λ, β, t > 0.  As noted earlier in (9) 
 

    ( ) ( )
td

td
th c

c
µ

=  

 
 The data required to estimate λ and β are (1) the number of distinct B-modes, m, 
that occur during [0,T] and (2) the B-mode first occurrence times 

Tttt m ≤≤≤≤< L210 .  Crow [1] states that the maximum likelihood estimates of λ and 

β, denoted by 
^
λ  and 

^
β  respectively, satisfy the following equations: 

 
   mT =βλ ˆˆ        (25) 
 

   

∑
=









=

m

i it
T

m

1

ln
β̂       (26) 

 
Note (25) merely says that the estimated number of distinct B-modes that occur during 
[0,T] should equal the observed number of distinct B-modes over this period.  Solving 
(25) for λ̂  we can write our estimate for ( )Thc  in terms of m  and β̂  as follows: 
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    ( ) 1ˆ
ˆ

1ˆ ˆˆˆˆ −− 





== β

β
β ββλ T

T
mTThc  

 

      
T

m β̂
=     (27) 

 
 Crow [1] notes that conditioned on the observed number of distinct B-modes 
m ,i.e. ( ) mTM = , the estimator 
 

   2ˆ1
≥






 −

= m
m

m
m ββ     (28) 

 
is an unbiased estimator of β, i.e., 
 
   ( ) ββ =mE       (29) 
 
Thus we shall also consider estimating ( ) 1−= ββλ TThc  by using mβ .  This leads to 
the estimate 
 

   ( )
T

m
Th m

c
β

=       (30) 

 
 Finally, to complete our assessment of the system failure intensity, we need to 
assess the Crow/AMSAA Model expected system failure intensity ( )Tcρ .  Recall, by 
(14) 
 

   ( ) ( ) ( )ThdT cd

K

i
iiAc µλλρ +−+= ∑

=1

1    (31) 

 
Piecing together our assessments for the individual terms in (31) we arrive at the 

following assessment for ( )Tcρ  based on 
^
β : 
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i
iA dNdN
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Since 0=iN  for obsi∉ , we finally obtain 
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   ( ) ( )
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∈∈ obsi
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iiAc dNdN
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T ** ˆ11ˆ βρ   (32) 

 
Likewise, we arrive at the following alternate assessment for ( )Tcρ  based on mβ  
(provided 2≥m ): 
 

   ( ) ( )








+−+= ∑∑
∈∈ obsi

imi
obsi

iAc dNdN
T

T **11 βρ   (33) 

 
Note both estimates of ( )Tcρ  are of the form 
 

   ( ) ( )








+= ∑
∈obsi

ic destimateN
T

TEstimate **1 βρ   (34) 

 
where *N  is the “adjusted” number of failures over [0,T].  Recall the historically used 
adjustment procedure assessment for the system failure intensity, after incorporation of 
delayed fixes, is given by 
 

    ( )
T
NTradj

*

ˆ =  

 
Also recall 
 

    βββ ˆˆ1
<






 −

=
m

m
m  

 
Thus we see by (32) and (33) 
 
   ( ) ( ) ( )TTTr ccadj ρρ ˆˆ <<     (35) 
 
 Also of interest is an assessment of the reciprocal of ( )Tcρ , i.e. 
 
    ( ) ( ){ } 1−= TTM cc ρ  
 
The assessment for the system mean time between failures after incorporation of the 
delayed fixes, denoted by M(T), is taken to be the Crow/AMSAA Model assessment of 

( )TM c .  The assessments of ( )TM c  based on ( )Tcρ̂  and ( )Tcρ  are denoted by ( )TM c
ˆ  

and ( )TM c  respectively.  Thus 
 
   ( ) ( ){ } 1ˆˆ −= TTM cc ρ      (36) 
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and 
 
   ( ) ( ){ } 1−= TTM cc ρ      (37) 
 
By (35) we have 
 
   ( ) ( ) ( ){ } 1ˆˆ −<< TrTMTM adjcc     (38) 
 
 In Section 4.3.5 we shall argue that ( )Tcρ  generally provides a more accurate 
assessment of ( )Tcρ  than does ( )Tcρ̂ .  However, somewhat surprisingly at first thought, 

in Section 4.3.5 we identify conditions under which ( )TM c
ˆ  generally provides a more 

accurate assessment of ( )TM c  than does ( )TM c . 
 

4.3.4  Reliability Growth Potential.  Consider the expression in (3) for ( )Tρ , the 
expected system failure intensity after incorporation of the delayed fixes.  If we let 

∞→T  and denote the resulting limit of ( )Tρ  by GPρ  we obtain 
 

   ( ) ( )∑
=

∞→
−+==

K

i
iiATGP dT

1

1lim λλρρ    (39) 

 
The expression GPρ  is called the growth potential failure intensity.  Its reciprocal is 
referred to as the growth potential MTBF.  The growth potential MTBF represents a 
theoretical upper limit on the system MTBF.  This limit corresponds to the MTBF that 
would result if all B-modes were surfaced and corrected with specified fix effectiveness 
factors.  Note GPρ  is estimated by 
 

   ( ) 







−+= ∑

∈obsi
iiAGP NdN

T
*11ρ̂     (40) 

 
If the reciprocal ( ) 1ˆ −

GPρ  lies below the goal MTBF then this may indicate that achieving 
the goal is high risk. 
 

4.3.5  Use of the Maximum Likelihood Estimator versus the Unbiased Estimator 
for β .  Recall that the estimator 
 

    ββ ˆ1






 −

=
m

m
m  

 
conditioned on ( ) mTM = , with 2≥m , is unbiased for β , i.e. 
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    ( ) ββ =mE  
 
Furthermore the variances of mβ  and β̂ , denoted by ( )mV β  and ( )β̂V  respectively, 
satisfy the following: 
 

    ( ) 
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
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
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for 2≥m .  Equation (41) together with the unbiased property of mβ , suggest that mβ  

provides a more accurate assessment of β  than does β̂ . 
 
 Next consider the assessments of ( )Thc  based on β̂  and mβ .  Recall the 
Crow/AMSAA Model assumes that M(t), t>0, is a non-homogeneous Poisson process 
with mean value function 
 
    ( ) ( )( ) 0, >== βλλµ βttMEt  
 
Thus, in particular, M(T) is Poisson distributed with mean 
 
    ( )( ) βλTTME =  
 
Using this fact, it can be shown that ( )Thc  is an approximately unbiased estimator of β  
under most conditions of practical interest, where it is understood that ( )Thc  denotes a 
conditional estimator, conditioned on ( ) 2≥TM .  To be more explicit, ( )Thc , when 
viewed as an estimator (as opposed to an estimated value), is a random variable which is 
a function of M(T) and the random vector of B-mode first occurrence times 

( )( )TMTT ,,1 L .  When ( ) mTM =  and ( )( ) ( )mTM ttTT ,,,, 11 LL = , the estimator ( )Thc  takes 

on the value 
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The estimator ( )Thc  can be shown to satisfy the following: 
 
   ( )( ) ( )ThThE cc ≅       (42) 
 
provided ( )( ) 00Pr ≅=TM , where Pr denotes the probability function for M(T). 
 
 Next, consider the variances of the estimators ( )Thc  and ( )Thc

ˆ  conditioned on 
( ) mTM = .  For 2≥m ,  
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   ( ) ( )( )mTMThV c == ˆ      (43) 
 
Now consider the variances of ( )Thc  and ( )Thc

ˆ  conditioned on ( ) 2≥TM .  Since (43) 
holds for each 2≥m , we have 
 
   ( ) ( )( ) ( ) ( )( )2ˆ2 ≥<≥ TMThVTMThV cc   
 (44) 
 
Equations (42) and (44) suggest that the estimator ( )Thc  provides a more accurate 

estimate of ( )Thc  than does the estimator ( )Thc
ˆ  when two or more distinct B-modes 

occur during [0,T]. 
 
 Next we consider the bias of the estimators ( )Tcρ̂  and ( )Tcρ .  To do so, let  
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where { }mβββ ,ˆ~
∈ .  Also let ( )
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Thus the expected value of ( )Tcρ

~  is  
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Recall by (31), 
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Thus by equation (45), we have 
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This shows that the portion of the bias of the estimator ( )Tcρ

~  that is not influenced by 
the assessments *

id  is simply 
 
    ( )( ) ( )ThThE cc −

~  
 
To reduce the bias as much as possible for a given set of fix effectiveness assessments 

*
id , we wish to make the bias  

 
    ( )( ) ( )ThThE cc −

~  
 
as small as possible.  Since ( )Thc  is almost an unbiased estimator for ( )Thc , this 
suggests we use  
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to assess ( )Tcρ . 
 
 Next , we discuss the assessment of ( ) ( ){ } 1−= TTM cc ρ .  To do so let 

( ) ( ){ } 1~~ −= TTM cc ρ .  Thus  
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Note  
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Suppose 0≅Aλ  and 1≅id  for Ki ,,1 L= .  Then 
 
   ( ) ( ){ } 1−≅ ThTM cc       (47) 
 

For such conditions one may have 0≅
T

N A  and 1* ≅id  for obsi∈ .  If this is the case then 

 
   ( ) ( ){ } 1~~ −

≅ ThTM cc       (48) 
 
It can be shown that if the expected number of distinct B-modes is at least two then 
 

   ( ){ } ( ){ } ( ){ } 111 ˆ −−− << ThThTh ccc    (49) 
 
Thus, under conditions for which (47) and (48) hold, Equation (49) suggests using 

( )TM c
ˆ  rather than ( )TM c  as an assessment of ( )TM c . 
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 More generally, recall by (38) ( ) ( )TMTM cc <ˆ .  Thus, when the expected number 

of distinct B-modes is at least two, (49) suggests ( )TM c
ˆ  will be a better assessment of 

( )TM c  than ( )TM c  whenever ( ) ( )TMTM cc
ˆ< . 

 
4.3.6  Example.  The following example is taken from [1] and illustrates application 

of the Crow/AMSAA model. 
 
 Example 4.3.6.1 
 Data were generated by a computer simulation with 02.0=Aλ , 1.0=Bλ , 

100=K  and the id ’s distributed according to a beta distribution with mean 0.7.  The 
simulation portrayed a system tested for 400=T  hours.  The simulation generated 

42=N  failures with 10=AN  and 32=BN .  The thirty-two B-mode failures were due 
to M=16 distinct B-modes.  The B-modes are labeled by the index i where the first 
occurrence time for mode i is it  and 4000 1621 =<<<<< Tttt L . 
 
 Table 4.3.6.1 lists, for each B-mode i, the time of first occurrence followed by the 
times of subsequent occurrences (if any).  Column 3 of the table lists iN , the total 
number of occurrences of B-mode i during the test period.  Column 4 contains the 
assessed fix effectiveness factors for each of the observed B-modes.  Column 5 has the 
assessed expected number of type i B-modes that would occur in T=400 hours after 
implementation of the fix.  Finally, the last column contains the base e logarithms of the 
B-mode first occurrence times.  These are used to calculate β̂ . 
 

Table 4.3.6.1  Projection Example Data. 
B-mode Failure Times (hrs) 

iN  *
id  ( ) ii Nd *1−  itln  

1 15.04, 254.99 2 .67 .66 2.7107 
2 25.26, 120.89, 366.27 3 .72 .84 3.2292 
3 47.46, 350.2 2 .77 .46 3.8599 
4 53.96, 315.42 2 .77 .46 3.9882 
5 56.42, 72.09, 339.97 3 .87 .39 4.0328 
6 99.57, 274.71 2 .92 .16 4.6009 
7 100.31 1 .50 .50 4.6083 
8 111.99, 263.47, 373.03 3 .85 .45 4.7184 
9 125.48, 164.66, 303.98 3 .89 .33 4.8321 
10 133.43, 177.38, 324.95, 364.63 4 .74 1.04 4.8936 
11 192.66 1 .70 .30 5.2609 
12 249.15, 324.47 2 .63 .74 5.5181 
13 285.01 1 .64 .36 5.6525 
14 379.43 1 .72 .28 5.9387 
15 388.97 1 .69 .31 5.9635 
16 395.25 1 .46 .54 5.9795 

Totals  32 11.54 7.82 75.7873 
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 From Equation (1) and Table 4.3.6.1, the adjustment procedure estimate of r(T) = 
r(400) is 
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     04455.0
400

82.710
=

+
=  

 
Thus the adjustment procedure estimate of the system MTBF is 
 

    ( ){ } 45.22
82.17

400400ˆ 1 ==−
adjr  

 
Looking at Equation (40), we can see that the adjustment procedure estimate of system 
failure intensity after implementation of the fixes is simply GPρ̂ , the estimated growth 
potential failure intensity.  Thus 
 
    ( ) 04455.0400ˆˆ == adjGP rρ  
 
Also, the estimate of the system growth potential MTBF is 
 
    ( ){ } 45.22400ˆˆ 11 == −−

adjGP rρ  
 
 To obtain an estimate with less bias of the system’s failure intensity and 
corresponding MTBF at T=400 hours, after incorporation of fixes to the sixteen surfaced 
B-modes, we use the Crow/AMSAA model estimation equation (32).  This projection is 
given by 
 

    ( ) ∑
∈











+=

obsi
iGPc d *

400

ˆ
ˆ400ˆ βρρ  

 

    ( )54.11
400

ˆ
04455.0 










+=

β    (50) 

 
The mle β̂  is obtained from Equation (26), i.e., 
 

    
∑∑
==

−
=









= m

i
i

m

i i

tTm

m

t
T

m

11

lnlnln
β̂  



 

 109

 

    7970.0
7873.75400ln16

16
=

−
=  

 
Thus, by (50), the Crow/AMSAA projection for the system failure intensity, based on β̂ , 
is 
 

    ( ) ( )54.11
400
7970.004455.0400ˆ 






+=cρ  

 
     06754.0=  
 
The corresponding MTBF projection is 
 
    ( ){ } 81.14400ˆ 1 =−

cρ  
 
 A nearly unbiased assessment of the system failure intensity, for ii dd =* , can be 

obtained by using mβ  instead of β̂ .  Recall by (28), 
 

    ( ) 7472.07970.0
16
15ˆ1

=





=






 −

= ββ
m

m
m  

 
By equation (33), the projected system failure intensity based on mβ  is 
 

    ( ) ∑
∈

+=
obsi

i
m

GPc d
T

*ˆ400
β

ρρ  

 

     ( )54.11
400
7472.004455.0 






+=  

 
     06611.0=  
 
The corresponding MTBF projection is 
 
    ( ){ } 13.15400 1 =−

cρ  
 
 As discussed in Section 4.3.5, we recommend basing the projected system failure 
intensity on ( )Tcρ  which uses mβ , but assess the projected system MTBF by using β̂ .  
Thus in this example we would recommend assessing the projected system failure 
intensity by 
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    ( ) 06611.0400 =cρ  
 
and the projected system MTBF by 
 
    ( ){ } 81.14400ˆ 1 =−

cρ  
 
4.4 The AMSAA Maturity Projection Model (AMPM) – Continuous. 
 

4.4.1  Introduction.  The continuous version of the AMPM assumes the test 
duration is measured in a continuous scale such as time or miles.  Throughout this section 
AMPM will refer to the continuous version of the model and we shall refer to time as the 
measure of test duration. 
 
 The AMPM addresses making reliability projections in several situations of 
interest.  One case corresponds to that addressed by the Crow/AMSAA projection model 
introduced in [1] and discussed in Section 4.3.  This is the situation in which all fixes to 
B-modes are implemented at the end of the current test phase, Phase I, prior to 
commencing a follow-on test phase, Phase II.  The projection problem is to assess the 
expected system failure intensity at the start of Phase II.  Another situation handled by the 
AMPM estimation procedure is the case where the reliability of the unit under test has 
been maturing over Test Phase I due to implemented fixes during Phase I.  This case 
includes the situations where 
 

(i) all surfaced B-modes in Test Phase I have fixes implemented within this test 
phase or 
 

(ii) some of the surfaced B-modes are addressed by fixes within Test Phase I and the 
remainder are treated as delayed fixes, i.e., are fixed at the conclusion of Test Phase I, 
prior to commencing Test Phase II. 
 
 A third type of projection of interest involves projecting the system failure 
intensity at a future program milestone.  This future milestone may occur beyond the 
commencement of the follow-on test phase. 
 
 All the above type of projections are based on the Phase I B-mode first occurrence 
times, whether the associated B-mode fix is implemented within the current test phase or 
delayed (but implemented prior to the projection time).  In addition to the B-mode first 
occurrence times, the projections are based on an average fix effectiveness factor (FEF).  
This average is with respect to all the potential B-modes, whether surfaced or not.  
However, as in the Crow/AMSAA model, this average FEF is assessed based on the 
surfaced B-modes.  For the AMPM model, the set of surfaced B-modes would typically 
be a mixture of B-modes addressed with fixes during the current test phase as well as 
those addressed beyond the current test phase. 
 
 In some instances, a reliability projection for a future milestone can be based on 
extrapolating a reliability growth tracking curve.  Such a curve only utilizes cumulative 
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failure times and does not use B-mode fix effectiveness factors.  This is a valid projection 
approach provided it is reasonable to expect that the observed pattern of reliability 
growth will continue up through the milestone of interest.  However, this pattern could 
change in a pronounced manner.  Reasons for such a change include 
 
 (i) a change in the test environment; 
 
 (ii) less future resources to analyze and implement effective corrective actions; 
and 
 
 (iii) jumps in reliability due to delayed fixes. 
 
If extrapolating the current tracking curve is not deemed suitable due to considerations 
such as above, the AMPM projection methodology may be useful.  Unlike assessments 
based on the tracking model, the AMPM assessments are independent of the fix 
discipline, as long as the fixes are implemented prior to the projection milestone date of 
interest.  Unlike the reliability growth tracking model in [2], the AMPM (as well as the 
Crow/AMSAA projection model) utilize a non-homogeneous Poisson process with 
regard to the number of distinct B-modes that occur by test duration t.  The associated 
pattern of B-mode first occurrence times is not dependent on the corrective action 
strategy, under the assumption that corrective actions are not inducing new B-modes to 
occur.  Thus the AMPM assessment procedure is not upset by jumps in reliability due to 
delayed groups of fixes.  In contrast, reliability growth tracking curve methodology 
utilizes the pattern of cumulative failure times.  Such a pattern is sensitive to the 
corrective action strategy.  Thus a reliability growth tracking curve model may not be 
appropriate for fitting failure data or for extrapolating due to a corrective action strategy 
that is not compatible with the model. 
 
 Note that AMPM reliability projections for a future milestone would be optimistic 
if corrective actions beyond the current test phase were less effective than the average 
FEF assessment based on B-modes surfaced through the current test phase.  Also, a 
change in the future testing environment could result in a new set of potential failure 
modes or affect the rates of occurrence of the original set of failure modes.  Either of 
these circumstances would tend to degrade the accuracy of the AMPM reliability 
projection. 
 
 Another instance in which a reliability projection model would be useful is when 
the current test phase contains a number of design configurations of the units under test 
due to incorporation of reliability fixes during the test phase.  If there is a lack of fit of the 
reliability growth tracking model over these configurations then the tracking model 
should not be used to assess the reliability of the latest configuration or for extrapolation 
to a future milestone.  Such a lack of fit may be due to the corrective action process, i.e., 
when the fixes are implemented and their effectivity.  As pointed out earlier, the AMPM, 
unlike a tracking model, is insensitive to any nonsmoothness in the expected number of 
failures versus test time that results from the timing or effectivity of corrective actions.  
Thus in such a situation, program management may wish to use a projection method such 
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as the AMPM to assess the reliability of the current configuration or to project the 
expected reliability at a future milestone. 
 
 As discussed in [3], the AMPM can also be used to construct a useful reliability 
maturity metric.  This metric is the fraction of the initial system B-mode failure intensity, 

Bλ , surfaced by test duration t.  By this we mean the expected fraction of Bλ  due to B-
modes surfaced by t.  This concept will be expanded upon in a later subsection. 
 
 Prior to presenting the model equations and estimation procedures, we shall list 
the associated notation and assumptions. 
 

4.4.2  AMPM Notation and Assumptions. 
 

Notation: 
 

βα ,  Parameters for gamma density function, where 1−>α  and 0>β . 
 

 !α   Denotes the integral ∫
∞

−

0

dxex xα  for 1−>α . 

 
 Λ   Gamma random variable. 
 
 ( )βα ,Γ  Denotes gamma random variable with parameters 1−>α , 0>β . 
 
 Λf   Denotes density function for ( )βα ,~ ΓΛ , where 
 

    ( ) 1! −

−

Λ = α

β
λ

α

βα
λλ ef   for ;0>λ  

 
     0=    elsewhere 
 
 ( )KΛΛ=Λ ,,1 L   Random sample of size K from ( )βα ,Γ . 
 
 ( )Kλλλ ,,1 L=   Realization of Λ . 
 

 KB,λ     Expected value of ∑
=

Λ
K

i
i

1

. 

 
 =∞,Bλ KBK ,lim λ

∞→
 

 



 

 113

( )λµ ;t  Expected number of distinct B-modes conditioned 
on λ=Λ . 

 
( )λ;th  Expected rate of occurrence of B-modes given 

λ=Λ . 
 
 ( )th     Unconditional expected B-mode rate of occurrence. 
 

( )λ;tr  System failure intensity after fixes to B-modes 
surfaced by t have been implemented, conditioned 
on λ=Λ . 

 
( )λρ ;t  Expected value of ( )λ;tr  with respect to random 

first occurrence times of B-modes. 
 
 ( )tρ     Expectation of ( )Λ;tρ  with respect to Λ . 
 

( )tI i  Equals 1 if B-mode i occurs by t, equals 0 
otherwise. 

 
( )λ;tu  Failure intensity at time t due to unsurfaced B-

modes, conditioned on λ=Λ . 
 

( )ts  Unconditional expected failure intensity due to set 
of B-modes surfaced by t, in absence of any fixes. 

 
 ( )tθ     Fraction of KB,λ  surfaced as a function of t. 
 
 it     Time of first occurrence of B-mode i. 
 
 ( )mttt ,,1 L=  
 

( )λ,, tmL  Likelihood function for the test data ( )tm,  given 
λ=Λ . 

 
( )tmL ,  Expectation of ( )Λ,, tmL . 

 
 ln    Natural logarithm (base “e”). 
 
 Z    ( ){ }tmLm ,!ln  
 



 

 114

 Kv     ( )K,, βα  
 

 Kv
^

    





 KKK ,,

^^
βα  

 
obs Set of indices associated with m  observed B-

modes. 
 

0K  Greatest lower bound for set of K-values for which 
AMPM mle’s are well defined. 

 
 IBMK     IBM model mle of K. 
 
Additional Assumptions for AMPM – Continuous 
 

• The time to first occurrence is exponentially distributed for each failure mode. 
 

• For ,,,2,1 Ki L=  the effectiveness of a fix associated with B-mode i is 
independent of the mode’s initial rate of occurrence iλ . 

 
• The B-mode initial rates of occurrence ( )Kλλ ,,1 L  constitute the realization of a 

random sample ( )KΛΛ ,,1 L  from a gamma distribution with density Λf .  This 
models mode-to-mode variation in the B-mode initial failure rates.  That is, we 
assume the ( )Kii ,,1 L=Λ  are independent and identically distributed (IID) 
random variables, where ( )βα ,~ ΓΛ i . 

 
4.4.3  AMPM Development.  The AMPM provides a procedure for assessing the 

system failure intensity ( )λ;tr .  Recall ( )λ;tr  denotes the system failure intensity after 
fixes to all B-modes surfaced by test time t have been implemented. 
 
 Note ( )Kλλλ ,,1 L=  denotes the initial B-mode rates of occurrence.  In 
particular, consider B-mode i.  If this mode does not occur by t then its rate of occurrence 
at t is still iλ .  However, if B-mode i occurs by t then, by our definition of ( )λ;tr , the 
contribution of this mode to ( )λ;tr  is only ( ) iid λ−1  due to the implemented fix (or 
fixes) to mode i by t.  We may conveniently mathematically express the contribution of 
B-mode i to ( )λ;tr  by  
 
   ( ){ } iii tId λ−1        (1) 
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Thus 
 

   ( ) ( ){ }∑
=

−+=
K

i
iiiA tIdtr

1

1; λλλ  

 

    ( )∑∑
==

−+=
K

i
iii

K

i
iA tId

11

λλλ     (2) 

 
As in the Crow/AMSAA model, the AMPM assesses the system failure intensity ( )λ;tr  
by an assessment of the expected value of ( )λ;tr , i.e. ( ) ( )( )λλρ ;; trEt = .  Note by (2) 
we have  
 
   ( ) ( )( )λλρ ;; trEt =  
 

    ( )( )∑∑
==

−+=
K

i
iii

K

i
iA tIEd

11

λλλ    (3) 

 
In Appendix D, Annex 1 we show, 
 
   ( )[ ] t

i
ietIE λ−−= 1       (4) 

 
where the expectation is with respect to the time of first occurrence of B-mode i. 
This yields 
 

   ( ) ( ) ∑∑
=

−

=

+−+=
K

i

t
ii

K

i
iiA

ieddt
11

1; λλλλλρ   (5) 

 
 In Section 4.3 (where the argument λ  was suppressed) it was noted that the 
Crow/AMSAA model approximates ( )λρ ;t  by 
 

   ( ) ( ) ( )λµλλλρ ;1;
1

thdt cd

K

i
iiAc +−+= ∑

=

  (6) 

 
with 
 
   ( ) 1; −= v

c uvtth λ       (7) 
 
for positive constants u, v.  This form for the expected rate of occurrence of new B-
modes corresponds to approximating the expected number of distinct B-modes occurring 
over [0, t] by 
 
   ( ) v

c utt =λµ ;       (8) 
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Recall the Crow/AMSAA procedure estimates the constants u, v by the mle statistics 
based on the B-mode first occurrence times.  The summation term in (6) is assessed as 
 

   ( )∑
∈

−
obsi

i
i t

N
d *1       (9) 

 
where *

id  is the assessed fix effectiveness factor for observed B-mode i, and iN  is the 
number of occurrences of failures during [0,t] attributed to B-mode i.  Note in the 
Crow/AMSAA procedure all fixes are assumed to be delayed to the end of the period 

[0,t].  Under this assumption 
t

N i  is an unbiased estimate of iλ .  However, if fixes to B-

modes are implemented prior to the end of this period (9) may not be an adequate 

assessment of ( )∑
=

−
K

i
iid

1

1 λ . 

 
 The AMPM does not attempt to assess ( )λρ ;t  by estimating each iλ .  Instead the 
AMPM approach is to view ( )Kλλ ,,1 L  as a realization of a random sample 

( )KΛΛ=Λ ,,1 L  from the gamma random variable ( )βα ,Γ .  This allows one to 
utilize all the B-mode times to first occurrence to estimate the gamma parameters βα , .  
Thus in place of directly assessing ( )λρ ;t , the AMPM uses estimates of α  and β  to 
assess the expected value of ( )Λ;tρ  where 
 

   ( ) ( ) ∑∑
=

Λ−

=

Λ+Λ−+=Λ
K

i

t
ii

K

i
iiA

ieddt
11

1; λρ   (10) 

 
This assessed value is then taken as the AMPM assessment of the system failure intensity 
after fixes to all B-modes surfaced over [0,t] have been implemented.  This approach 
does away with the need to estimate individual iλ .  Trying to adequately estimate 
individual iλ  could be particularly difficult in the case where many fixes are 
implemented prior to the end of the period [0,t]. 
 
 From Equation (10) we see that the expected value of ( )Λ;tρ  with respect to the 
random sample Λ , denoted by ( )tρ , is given by 
 

   ( ) ( ) ( ) ( )∑ ∑
= =

Λ−Λ+Λ−+=
K

i

K

i

t
iiiiA

ieEdEdt
1 1

1λρ  

 (11) 
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Recall the iΛ  are IID with ΛΛ ~i .  Thus ( ) ( )Λ=Λ EE i  and ( ) ( )tt
i eEeE i Λ−Λ− Λ=Λ  for 

Ki ,,1L= .  After rearranging terms and replacing ∑
=

K

i
id

1

 by dK µ , ( )iE Λ  by ( )ΛE , and 

( )t
i

ieE Λ−Λ  by ( )teE Λ−Λ  we arrive at 
 
   ( ) ( ) ( ){ } ( ){ }t

ddA eEKEKt Λ−Λ+Λ−+= µµλρ 1   (12) 
 
Next note 
 

   ( )Λ=







Λ= ∑

=

EKE
K

i
iKB

1
,λ     (13) 

 
Thus we can express ( )tρ  by 
 
   ( ) ( ) ( ){ }t

dKBdA eEKt Λ−Λ+−+= µλµλρ ,1   (14) 
 
 To interpret the term ( )teEK Λ−Λ  in (14) we first note that in Appendix D, 
Annex 1, it is shown that 
 

    ( ) ( )∑
=

−−=
K

i

tiet
1

1; λλµ  

 
Thus the expected rate of occurrence of new B-modes at t, given λ , is 
 

    ( ) ( ) ∑
=

−==
K

i

t
i

ie
dt
tdth

1

;; λλλµλ  

 

Consider the average (i.e. expected) value of ( ) ∑
=

Λ−Λ=Λ
K

i

t
i

ieth
1

;  over all possible 

random samples ( )KΛΛ=Λ ,,1 L , where ΛΛ ~i  for Ki ,,1 L= .  We obtain 
 

   ( )( ) ( ) ( )t
K

i

t
i eEKeEthE i Λ−

=

Λ− Λ=Λ=Λ ∑
1

;   (15) 

 
Let ( ) ( )( )Λ= ;thEth .  Thus ( )th  is the unconditional expected rate of occurrence of new 
B-modes at test time t averaged over all possible random samples Λ .  By (14) and (15) 
we have 
 
   ( ) ( ) ( )tht dKBdA µλµλρ +−+= ,1    (16) 
 



 

 118

This expression for ( )tρ  is similar in form to the Crow/AMSAA approximation to 
( )λρ ;t  given in Equation (14): 

 

    ( ) ( ) ( )thdt cd

K

i
iiAc µλλλρ +−+= ∑

=1

1;  

 
where reference to λ  was suppressed in the notation. 
 
 The expression in (16) for the expected system failure intensity after incorporation 
of B-mode fixes is actually quite appealing to one’s intuition if put in a slightly different 
form.  To arrive at this form we shall simply subtract and add the term ( )th  on the right 
hand side of Equation (16).  Doing this we can express ( )tρ  by 
 
   ( ) ( ) ( ){ } ( )ththt KBdA +−−+= ,1 λµλρ    (17) 
 
Now we see that ( )tρ  is the sum of three failure intensities.  The first is simply the 
constant failure intensity due to the A-modes.  To consider the second failure intensity we 
shall first consider ( )th .  We have shown that this term is the expected rate of occurrence 
of new B-modes at test time t averaged over the random samples Λ .  Additionally, ( )th  
is the expected failure intensity contribution to ( )tρ  due to the set of B-modes that have 
not been surfaced by t.  To see this, first note that the failure intensity at time t, 
conditioned on λ=Λ , due to unsurfaced B-modes is ( )λ;tu  where 
 

   ( ) ( ){ }∑
=

−=
K

i
ii tItu

1

1; λλ      (18) 

 
Recall by (4), 
 
    ( )[ ] t

i
ietIE λ−−= 1  

 
with respect to the first occurrence of B-mode i.  Thus by (18) we have 
 

   ( )[ ] ( )[ ]tIEtuE i

K

i
i

K

i
i ∑∑

==

−=
11

; λλλ  

 

    ( )λλ λ ;
1

the
K

i

t
i

i == ∑
=

−    (19) 

 
It immediately follows from (19) that ( )th  is the unconditional expected failure intensity 
due to the set of unsurfaced B-modes at time t, since ( ) ( )( )Λ= ;thEth . 
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 Finally, we consider the second term of ( )tρ  in (17).  In the absence of any fixes, 
the sum of ( )th  and the unconditional expected failure intensity due to the set of B-modes 
surfaced by t, denoted by s(t), must equal KB ,λ .  Thus ( ) ( )thts KB −= ,λ .  If we 
implement fixes to the B-modes surfaced by t with an average FEF equal to d , then the 
residual expected failure intensity due to the set of surfaced B-modes would be 
 
   ( ) ( ) ( ) ( ){ }thdtsd KB −−=− ,11 λ     (20) 
 
 In the above equations we can replace KB,λ  by h(0) since at t=0 all B-modes are 
unsurfaced.  Thus 
 
   ( ) KBh ,0 λ=       (21) 
 
 As in Section 4.3, we call the residual expected failure intensity approached by 
( )tρ  as t tends towards infinity the growth potential failure intensity, denoted by GPρ .  

Since ( ) 0lim =
∞→

th
t

 we have 

 
   ( ) BdAGP λµλρ −+= 1      (22) 
 
Note this expression has the same form as that for the growth potential in the Crow/ 
AMSAA model.  The quantity 1−

GPρ  is called the growth potential MTBF.  The growth 
potential for the AMPM is used in the same way as indicated in Section 4.3 for the Crow/ 
AMSAA model. 
 
 Another useful quantity is the fraction of the system expected initial B-mode 
failure intensity, Bλ , surfaced as a function of test time t.  We shall let ( )tθ  denote this 
quantity.  Thus, by definition of s(t), we have 
 

   ( ) ( ) ( )
B

B

B

thtst
λ

λ
λ

θ
−

==     (23) 

 
Note that ( )tθ  is independent of the corrective action process.  By this we mean that ( )tθ  
does not depend on when fixes are implemented nor on how effective they are. 
 
 The function ( )tθ  can usefully serve as a measure of system maturity.  Observe 
that for a test of duration t, no matter how effective our fixes are, we can only eliminate at 
most a fraction equal to ( )tθ  of the B-mode contribution to the initial system failure 
intensity.  Thus low values of ( )tθ  would indicate additional testing is required to surface 
a set of B-modes that account for a significant part of Bλ .  A high value for ( )tθ  could 
indicate that further testing is not cost effective.  Resources would be better expended 
toward formulating and implementing corrective actions for the surfaced B-modes.  As 
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part of a reliability growth plan it would be useful to specify goals for ( )tθ  at several 
program milestones. 
 
 Next we shall express the key AMPM reliability projection quantities in terms of 
K and the gamma parameters α  and β .  By Appendix D, Annex 2, we have 
 
   ( )1, += αβλ KKB       (24) 
 
   ( ) ( ) ( ){ }111 +−+−= αβµ tKt     (25) 
 

   ( ) ( )
( )

( )
td
td

t
Kth µ

β
αβ

α =
+

+
=

+21
1     (26) 

 

   ( ) ( ) ( ) ( )
( ) 21

1
11

++

+
++−+= αβ

αβµ
αβµλρ

t
K

Kt d
dA   (27) 

 
and 
 
   ( ) ( ) ( )211 +−+−= αβθ tt      (28) 
 
 Utilizing equation (24) for KB ,λ  we can also express ( )th  and ( )tρ  as follows: 
 

   ( )
( ) 2

,

1 ++
= αβ

λ

t
th KB       (29) 

 
and 
 

   ( ) ( )
( ) 2

,
, 1

1
++

+−+= αβ

λµ
λµλρ

t
t KBd

KBdA    (30) 

 
 In the next section, we shall consider the behavior of the AMPM as K increases.  
Limiting expressions for the AMPM quantities in (24) through (30) will be obtained as 

∞→K  under natural assumptions about KB ,λ  and Kβ .  Then parameter estimation 
procedures will be specified for the finite K AMPM and the limiting parameters as 

∞→K . 
 

4.4.4  Limiting Behavior of AMPM.  We shall now consider the limiting behavior 
of the AMPM as K increases.  To do so we first define step processes 

( ){ } KiforttX iK ,,10,, L=∞<≤  where 
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    ( )


 −

=
otherwise0

tby  occurs mode1
,

iBif
tX iK  

 
Note 
 
   ( )( ) 02Pr , =≥tX iK      (31) 
 
and 
 
   ( )( ) ( )( )0Pr11Pr ,, =−== tXtX iKiK    (32) 
 
Thus to complete our definition of these processes, we need only specify ( )( )0Pr , =tX iK .  
To keep the definition of these processes consistent with the AMPM assumptions we 
define 

   ( )( ) ( )∫
∞

Λ
−==

0
, 0Pr λλλ dfetX t
iK     (33) 

 
where ( )βα ,~ ΓΛ  and Λf  is the previously defined gamma density function with 

Kαα =  and Kββ = .  Note ( )tX iK ,  is the unconditional AMPM indicator function for B-
mode i corresponding to the earlier defined conditional indicator function ( )tI i  where 
 
    ( )( ) t

i
ietI λ−== 0Pr  

 
and subscript K was suppressed.  Note by (33) and Appendix D, Annex 2 
 
  ( )( ) ( ) ( ) ( ) ( )1

, 10Pr +−Λ− +=−Ψ=== αβ tteEtX K
t

iK  (34) 
 
By (32) and (34) we obtain 
 

   ( ) ( )







∆ ∑

=

K

i
iKK tXEt

1
,µ  

 

  ( )( ) ( ) ( ) ( )ttKKtX
K

i
KiK µβ α =+−=== ∑

=

+−

1

1
, 11Pr   (35) 

 
for ( ) ( )βαβα ,, =KK .  Thus the AMPM step processes ( ){ } KittX iK ≤≤∞<≤ 1,0,, , 
give rise to our previously developed AMPM. 
 
 To investigate the behavior of our projection model as K increases, we must 
specify the limiting behavior of Kα  and Kβ .  Since Kβ  is simply a scale factor for test 
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time t it is reasonable to keep Kβ  fixed, say ( )∞∈= ,0ββ K .  Recall by (24), 
( )1, += αβλ KKB .  Regardless of the value of K, KB,λ  represents the unconditional 

expected B-mode contribution to the initial system failure intensity.  Thus it is natural to 
let ( ) ( )∞∈=+ ∞ ,01 ,BKKK λαβ  for all K.  Actually, to obtain our results for the 
limiting behavior of the AMPM we need only insist that 
 
   ( )∞∈= ∞∞→

,0lim ββ KK
     (36) 

 
and 
 
   ( ) ( )∞∈=+ ∞∞→

,01lim ,BKKK
K λαβ    

 (37) 
 
We shall simply denote ∞β  and ∞,Bλ  by β  and Bλ , respectively.  Since 01≥+Kα , (36) 
and (37) imply 
 
   1lim −=

∞→ KK
α       (38) 

 
 Let ( )tX K  be the supposition of the independent step processes ( )tX iK , , i.e. 
 

   ( ) ( )∑
=

=
∆

K

i
iKK tXtX

1
,      (39) 

 
It is demonstrated in [4] that the stochastic process ( ){ }∞<≤ ttX K 0,  converges to a 
nonhomogeneous Poisson process (NHPP) with mean value function ( )t∞µ  as ∞→K , 
where 
 

   ( ) ( )tt B β
β
λ

µ +







=∞ 1ln      (40) 

 
This result suggests that for complex systems or subsystems, we can expect our AMPM 
process ( ){ }∞<≤ ttX K 0,  to behave like a NHPP ( ){ }∞<≤∞ ttX 0,  where ( )tX ∞  is the 
number of distinct B-modes that occur by t and ( ){ } ( )ttXE ∞∞ = µ  given in (40). 
 
 We can now relate the key AMPM reliability projection quantities in (24) through 
(28) which depend on K to the corresponding NHPP quantities.  To do so we shall 
subscript the AMPM quantities by K and the NHPP quantities by ∞ .  Thus, for example, 
by (24) and limit condition (37) we have 
 
   ( )∞∈= ∞∞→

,0lim ,, BKBK
λλ      (41) 
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(where we also denote ∞,Bλ  simply by Bλ ).  By (26) we also have 
 

    ( ) ( )
( )∫ ++

+
=

t

K

KK
K dz

z
K

t
K

0
21
1

αβ
αβ

µ  

 
Thus 
 

   ( ) ( )
( )∫

























+

+
=

+∞→∞→

t

K

KK

KKK
dz

z
K

t
K

0
21
1

limlim αβ
αβ

µ  

 
By (36) through (38) and (40) this yields 
 

  ( ) ( ) ( )tt
z

dzt B
t

B
KK ∞→∞

=+







=

+
= ∫ µβ

β
λ

β
λµ 1ln
1

lim
0

  (42) 

 
Again by (26), (36) through (38) and (40), we obtain 
 

  ( ) ( )
( ) 21

1limlim +∞→∞→ +
+

=
Kt

Kth
K

KK
KKK αβ

αβ  

 

   ( ) ( )th
dt

td
t

B
∞

∞ ==
+

=
µ

β
λ

1
   (43) 

 
By (27), (36) through (38) and (43) we arrive at 
 

 ( ) ( ) ( ) ( )
( ) 











+

+
++−+=

+∞→∞→ 21
1

11limlim
Kt

K
Kt

K

KKd
KKdAKKK αβ

αβµ
αβµλρ  

 

 ( ) ( ) ( )th
t dBdA

Bd
BdA ∞+−+=

+
+−+= µλµλ

β
λµ

λµλ 1
1

1  

 
  ( )t∞= ρ        (44) 
 
Additionally, by (22) and (41) we have 
 
    ( ){ }KBdAKKGPK ,, 1limlim λµλρ −+=

∞→∞→
 

 
    ( ) ∞=−+= ,1 GPBdA ρλµλ   
 (45) 
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Finally, by (28), (36) and (38) we deduce 
 

   ( ) ( ) ( ){ }
t

t
tt K

KKKK β
β

βθ α

+
=+−= +−

∞→∞→ 1
11limlim 2  

 
Thus by (43) we conclude 
 

   ( ) ( ) ( )tth
t

t
t

B

B
KK ∞

∞

∞→
=

−
=

+
= θ

λ
λ

β
β

θ
1

lim  

 (46) 
 

4.4.5 Estimation Procedure for AMPM.  In this section we shall specify the 
procedures to estimate key AMPM parameters and reliability measures expressed in 
terms of these parameters.  Estimation equations will be given for the finite K and NHPP 
variants of the continuous AMPM.  The model parameter estimators are mle’s.  Statistical 
details and further discussion of the estimation procedures are provided in Appendix D, 
Annex 3. 
 

Our parameter estimates are written in terms of the following data: m  = number of 
distinct B-modes that occur over a test period of length T, ( )mttt ,,1 L=  where 

Tttt m ≤≤≤≤< L210  are the first occurrence times of the m  observed B-modes, and 

An  = number of A-mode failures that occur over test period T.  We shall denote an 
estimate of a model parameter or expression by placing the symbol “^” over the quantity. 
 

The finite K AMPM estimates are based on a specified value of K.  If we hold the 
test data constant and let ∞→K  we obtain AMPM projection estimates that are 
appropriate for complex subsystems or systems that typically have many potential B-
modes.  The AMPM limit estimating equations are derived in Appendix D, Annex 3.  
These equations can also be obtained from mle equations for the NHPP associated with 
the AMPM.  This process was discussed in Section 4.4.4 and has the mean value function 
given by Equation (40). 
 

Recall KK βα ,  are the gamma parameters for the AMPM where it is assumed the K 
initial B-mode failure rates are realized values of a random sample from a gamma 
random variable ( )KK βα ,Γ . 
 

The mle for Kβ  is K

^
β  where 
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T
T

m

t
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t
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m
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i
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i
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i
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












+
−















+

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










+













+

+

=

∑

∑∑∑

=

===

^

^

1
^

^

1
^^

^

1
^

1
^

^

11

11ln

111

1

1

1
ln

β

β

β
β

ββ

β

ββ

β

 (47) 

 

The mle for Kα  is K

^
α  where K

^
α  can be easily obtained from K

^
β  and either equation 

below.  These equations are the maximum likelihood equations for Kα  and Kβ  
respectively (see Appendix D, Annex 3): 
 

  






























+

+
−






 +=






 + ∑

=

−
− m

i
iK

K
KK

t

T
TKm

1
^

^
^

1
1^

1

1
ln1ln1

β

β
βα   (48) 

 

   ( ) ∑

∑

=

=

+
+

+

−
+

−

=+ m

i
iK

i

K

m

i
iK

i

K
K

t

t

T

TmK
t

tm

1
^^

1
^^

^

11

1
1

ββ

ββ
α    (49) 

 

Using 





 KKK ,,

^^
βα  we can estimate all our finite K AMPM quantities where the 

A-mode failure rate Aλ  is estimated by T
nAA =

^
λ  and the average B-mode fix 

effectiveness factor dµ  is assessed as 
 

   ∑
∈

=
obsi

id d
m

** 1µ       (50) 

 
 
In (4.50), the assessment *

id  of the fix effectiveness factor (FEF) for observed B-mode i 
will often be based largely on engineering judgement.  The value of *

id  should reflect 
several considerations: (1) How certain we are that the problem has been correctly 
identified; (2) the nature of the fix, e.g., its complexity; (3) past FEF experience and (4) 
any germane testing (including assembly level testing). 
 

Note the left-hand side of Equation (4.47) requires a value for K before we can 

numerically solve for K

^
β .  In practice we do not know the value of K.  We could attempt 
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to use the data ( )tm,  to statistically estimate K.  However, graphs presented in the next 
section illustrate the difficulty in obtaining a reasonable estimate for K even for a large 
data set that appears to fit the model well.  Thus we prefer to take the point of view that 
we should not attempt to statistically assess K.  However, by conducting a standard 
failure modes and effects criticality analysis (FMECA), we can place a lower bound on 
K, say lK .  Our experience with the AMPM indicates that if K is substantially higher 
than m , say, e.g., mK 10≥ , then our AMPM projection quantities will be insensitive to 
the value of K.  We believe for a complex system or subsystem it will often be the case 
that mK 10≥l  or at least the unknown value of K will be m10  or higher.  The factor 10 
may be larger than necessary.  We suggest exercising the finite K AMPM with several 
plausible lower bound values for K and comparing the associated projections with those 
obtained in the limit as ∞→K .  This is illustrated for a data set in the next section. 
 

To obtain the limiting AMPM projection model estimates consider the sequence of 

finite K AMPM estimates 
0

^

KKK ≥
β  where we assume K

^
β  satisfies Equation (47) 

for each 0KK ≥ .  In Appendix D, Annex 3 it is shown that 
 

   ( )∞∈=
∞→∞ ,0lim

^^

KK
ββ      (51) 

 
is a finite positive value.  Moreover, it is demonstrated that 
 

   0
11

11ln ^

^

1
^

^
=

+
−

+













 +

∞

∞

=
∞

∞ ∑
T

Tm

t
T

m

i
i β

β

β
β   (52) 

 
It is also shown that 
 

   1lim
^^

−==
∞→

∞ K
K

αα      (53) 

 

where for each K

^
β , 0KK ≥ , K

^
α  satisfies Equation (48) (or Equation (49)).  The 

limiting AMPM estimates ∞

^
β  and ∞

^
λ , given below in Equation (55), can be shown to 

be mle’s for parameters ∞β  and ∞,Bλ .  Recall these parameters define the NHPP 
discussed in Section 4.4 whose mean value function is given in Equation (40). 
 

For ease of reference, the finite K AMPM and limiting AMPM estimates for key 
projection model quantities are listed below and indexed by K and ∞ , respectively: 
 

   





 += 1

^^^

KKK K αβλ      (54) 
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





 +

=

∞

∞
∞

T

m
^

^
^

1ln β

β
λ      (55) 

 

   ( )





















 +−=









+− 1^^

^

11
K

tKt KK

α

βµ     (56) 

 

   ( ) 





 +














= ∞

∞

∞
∞ tt B ^

^
,

^
^

1ln β
β

λµ     (57) 

 

   ( )
2^

^
^

^

1
+







 +

=
K

t

th

K

K
K

α

β

λ      (58) 

 

   ( )
t

th B

∞

∞
∞

+
= ^

,

^
^

1 β

λ       (59) 

 

   ( ) KBdAKGP ,

^
*

^

,

^
1 λµλρ −+=     (60) 

 

   ∞∞ 







−+= ,

^
*

^

,

^
1 BdAGP λµλρ     (61) 

 

   ( ) ( )tht KdKGPK

^
*

,

^^
µρρ +=      (62) 

 

   ( ) ( )tht dGP ∞∞∞ +=
^

*
,

^^
µρρ      (63) 

 

   ( )








+−







 +−=

2^^
^

11
K

tt KK

α

βθ     (64) 

 

   ( )
t

tt
∞

∞
∞

+
= ^

^
^

1 β

βθ       (65) 

 
 Note (55) together with (57) imply 
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   ( ) mTT B =





 +














= ∞

∞

∞
∞

^

^
,

^
^

1ln β
β

λµ    (66) 

 

This agrees with intuition in the sense that ( )T∞

^
µ  is an estimate of the expected number 

of distinct B-modes generated over the test period [0,T] while m  is the observed number 
of distinct B-modes that occur. 
 

Suppose we adopt the view that our “model of reality” for a system or subsystem is 
the AMPM for a finite K which is large but unknown.  Then we can consider the limiting 
AMPM projection estimates as approximations to the AMPM estimates that correspond 
to the “true” value of K.  Our discussion in this section suggests that over the projection 
range of Tt ≥  values of practical interest, the limiting estimates should be good 
approximations for complex systems or subsystems.  In this sense, knowing the “true” 
value of K is usually unimportant.  Note, however, it is useful to have available the 
computational formulas for the finite K AMPM projection estimators as a function of K.  

For example, we can compare the graphs of a projection estimator such as ( )tK

^
ρ  or 

( )tK

^
µ  over the t range of interest for different values of K to the corresponding limiting 
estimator.  In this fashion we can discern the nature of the convergence, for example, the 
rapidity of convergence and whether the convergence is strictly increasing or decreasing 
for t values of interest.  This type of graphical analysis is illustrated with an example. 
 

4.4.6 An Example.  We shall illustrate several key features of our projection 
model and associated estimators by applying the model to a data set generated during an 
Army system development program.  Here, we shall just focus on the B-modes and let 

0
^

=Aλ .  This test data set consists of 163=m  B-mode first occurrence times generated 
over 8000=T  “equivalent” mission hours. 
 
 In Figure 1, we display the cumulative number of distinct B-modes versus the 

mission hours.  We also display the graphs of ( )tK

^
µ  for several values of K.  We can 

show that the greatest lower bound, 0K , for the set of K-values for which the AMPM 
estimators are well defined corresponds to a degenerate gamma.  This limiting gamma 
density has zero variance and mean equal to λ , where λλ =i  for Ki ,,1L= .  To avoid 
numerical instability, separate maximum likelihood equations were derived and used for 
this limiting case.  On our graphs we have labeled the curves associated with this case 
(i.e., 0KK = ) IBM to indicate that this limiting form for ( )tµ  coincides with the IBM 
model [5].  More explicitly, the IBM model uses this ( )tµ  for the expected number of 
“non-random” failures experienced in t test hours.  This limiting form for ( )tµ  also is 
used by Musa in his software reliability basic execution time model [6].  It is interesting 
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to note that the opposite AMPM limiting form, ( )t∞µ , is used by Musa and Okumoto in 
their Logarithmic Poisson software reliability execution time model[7].  In both of 
Musa’s models, ( )tµ  represents the expected number of software failures experienced 
over test period [0,t], where t denotes execution time. 
 

 Note over the data range, i.e., 80000 ≤≤ t  hours, the graphs of ( )tK

^
µ  are visually 

indistinguishable for ∞≤≤ KKIBM .  In such circumstances the value of K cannot be 
reasonably assessed from the test data even if one can formally obtain an mle for K.  In 
fact, applying the IBM model (where all iλ  are implicitly assumed to be equal), we 
always can obtain an mle for K whenever 
 

    
2

1
1

Tt
m

m

i
i <∑

=

 

 
(see Musa, Iannino, and Okumoto with respect to the exponential class family[8]).  
However, it has been our experience that the IBM estimate of K, 0KKIBM = , is often 

only marginally higher than m , the observed number of distinct B-modes.  Since ( )tK

^
µ  

approaches K as ∞→t , such a low estimate of K forces the slope of ( )tK

^
µ  to quickly 

approach zero beyond T (Figure 2).  Note ( )thK

^
 is the slope of ( )tK

^
µ .  Thus we can see 

that such a low estimate of K also quickly forces ( )thK

^
 close to zero for Tt ≥ .  This in 

turn tends to produce an “optimistic” failure intensity projection, especially when the 
assessed value of d is high.  This follows from the formula 
 

   ( ) ( )tht KdKBdAK

^*

,

^*^^
1 µλµλρ +






 −+=    (26) 

 
which, by Equations (24) and (25), applies for ∞≤≤ KKIBM .  Thus a good fit over [0,T] 
is not a sufficient condition to ensure that a projection model will provide reasonable 
projection estimates for Tt ≥ . 
 
 Looking at Figure 3, as one might expect, the model with ∞=K  appears to 
provide a more conservative estimate of ( )tK

1−ρ  for Tt ≥  than do the finite K estimators.  

However, for Tt ≥ , it is important to note that the ( )tK

^
µ , ( )tK

1^ −

ρ  and ( )tK

^
θ  graphs, 

displayed in Figures 1 and 2, 3, and 4, respectively, quickly become much closer to the 
corresponding ∞=K  graph than to the IBMKK =  graph as K increases above IBMK . 
 

 Observe from Figure 4, ( ) 67.8000
^

≈Kθ  for ∞≤≤ KKIBM .  Thus, whatever 
the “true” value of K, we estimate that the remaining B-modes contribute about 
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Bλ33.  to the system failure intensity. 
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Figure 1.  Expected vs Actual Number of B-Modes. 

 Figure 2.  K=245 (IBM) vs K=Infinity. 
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Figure 3.  Projected MTBF. 
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Figure 4.  Proportion of Initial B-Mode Intensity Surfaced. 
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APPENDIX D 
 

 
 This appendix utilizes the notation in Section 4.4.   
 
Annex 1 
 
We shall show the following: 
(1) ( )[ ] t

i
ietIE λ−−= 1  

 

(2) ( ) ( )∑
=

−−=
K

i

tiet
1

1; λλµ  

 

(3) ( ) ∑
=

−=
K

i

t
i

ieth
1

; λλλ  

 
 To show (1) observe that ( )tIi  is a random variable that only takes on the values 
zero and one.  Thus 
 
   ( )[ ] ( ) ( )( ) ( ) ( )( )1Pr10Pr0 =+== tItItIE iii  
 
    ( )( ) t

i
ietI λ−−=== 11Pr  

 
 To show (2), let ( )tM  denote the number of distinct B-modes that occur by t.  
Then 
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i
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Note (3) follows from (2) since 
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Annex 2 
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 Recall ( )βα ,~ ΓΛ .  Let Ψ  denote the moment generating function for Λ .  Thus, 
by definition, ( ) ( )Λ=Ψ xeEx  for all real x for which the expectation with respect to Λ  

exists.  One can show that Ψ  is defined for 
β
1

<x  and ( ) ( ) ( )11 +−−=Ψ αβ xx  (see e.g. 

Mood and Graybill[9]).  We shall utilize ( )xΨ  to express KB,λ , ( )tµ , ( )th , ( )tρ , and 
( )tθ  in terms of K and the gamma parameters α  and β .  We summarize our results 

below: 
 
(1) ( )1, += αβλ KKB  
 
(2) ( ) ( ) ( )[ ]111 +−+−= αβµ tKt  
 

(3) ( ) ( )
( )

( )
td
td

t
Kth µ

β
αβ

α =
+

+
=

+21
1  

 

(4) ( ) ( ) ( ) ( )
( ) 21

1
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++

+
++−+= αβ

αβµ
αβµλρ

t
K

Kt d
dA  

 
(5) ( ) ( ) ( )211 +−+−= αβθ tt  
 

 To show (1), recall 







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=

K

i
iKB E

1
,λ  where ( )KΛΛ=Λ ,,1 L  is a random sample 

from Λ .  Thus 
 

    ( ) ( )
0, =

Ψ
=Λ=

xxd
xdKEKKBλ  

 
    ( )1+= αβK  
 
 To demonstrate (2), note by Annex 1 
 
    ( ) ( )[ ]Λ= ;tEt µµ  
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    [ ]teEKK Λ−−=  
 
Thus 
 
    ( ) [ ]{ }teEKt Λ−−= 1µ  
 
    ( ){ }tK −Ψ−= 1  
 
    ( ) ( ){ }111 +−+−= αβ tK  
 
 To derive (3) we can utilize the expression for ( )λ;th  in Annex 1.  Doing so we 
arrive at 
 
    ( ) ( )[ ]Λ= ;thEth  
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Note 
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txdx

deE t
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This yields 
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1
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+
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αβ
t

Kth  

 
Note by (2) above, 
 

    ( ) ( )
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1
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+
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αβµ
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K
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Thus, as expected, 
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( ) ( )[ ] ( )ththE
td
td

=Λ= ;
µ

 

 
 To obtain (4) we recall the expression in (16) of Section 4.4.3 for ( )tρ : 
 
    ( ) ( ) ( )tht dKBdA µλµλρ +−+= ,1  
 
Thus (4) directly follows from (1) and (3) above. 
 
 Finally, recall by (23) of Section 4.4.3 we have 
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,

λ
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By (1) and (3) above we note 
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t
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Thus 
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    ( ) ( )211 +−+−= αβ t  
 
Annex 3 
 
Maximum Likelihood Estimates for AMPM 
 To obtain maximum likelihood estimates (mle’s) for our finite K and NHPP 
variants of the AMPM, assume m  distinct B-modes first occur at test times 

mttt ≤≤≤< L210  respectively over a test period of length T.  Let An  denote the 
number of A-mode failures that occur over test period T.  We shall denote an estimate of 

a model parameter by placing the symbol “^” over the parameter.  Thus, e.g., TnAA =
^
λ  

since Aλ  is constant over test period T. 
 
 Let t  be the vector of B-mode first occurrence times ( )mtt ,,1 L .  Also, let K  
denote the set of positive integers less than or equal to K and let mS  denote the set of all 
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subsets of K  of size m .  Then, conditioned on λ=Λ , the likelihood function for the 
test data ( )tm,  is ( )λ;,tmL  where 
 

    ( ) ∑ ∏∏
∈ −∈

−

∈

−












=

m

iii

SS SKi

T

Si

t
i eetmL λλλλ;,   

 (1) 
 
Thus the unconditional likelihood function for test data ( )tm,  is 
 

    ( ) ( ) ( )[ ] mKT
m

i

t eEeE
m
k

tmL i
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
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




Λ




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
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1

,  

 (2) 
 
where ( )βα ,~ ΓΛ  and the expectation is with respect to Λ . 
 
 By direct calculation of [ ]ΛΛ upeE , recalling the form of density function Λf  given 
in Section 4.4.2, we can show 
 

    [ ] ( )
( ) p

p
up

u
peE ++

Λ

−
+

=Λ 11!
!
αβα
βα    

 (3) 
 
for 1−< βu  and ( )αβ +−> 1 .  From (2) and (3) we obtain 
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Let ( ){ }tmLmZ ,!ln= .  Then it follows that 
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=
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and 
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Treating K as a positive real number we also obtain 
 

    ( ) ( )∑
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++−
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=
∂
∂ 1
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iKK
Z

βα   

 (7) 
 
 In Section 4.4 and this appendix we shall not use (7) since we are only interested 

in obtaining mle’s 
^
α , 

^
β  in terms of K and the test data.  We shall then hold the test data 

constant and let ∞→K  to study the limiting behavior of our AMPM estimators.  For 

each K, let K

^
α  and K

^
β  denote the values of α  and β  respectively that maximize 

( )tmL , , or equivalently, ( )( )tmLmZ ,!ln= .  Let ( )KvK ,, βα∆  and 





∆ Kv KKK ,,

^^^
βα .  

Then by (5) our maximum likelihood equation for α  is 
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 (8) 
 
By (6) our maximum likelihood equation for β  is 
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 (9) 
 

Equating the expressions for 
1^

1
−







 +Kα  obtained from (8) and (9) we arrive at a linear 

equation for K.  Solving for K we obtain 
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 For a given K and data set ( )tm,  generated over test period T we can solve (10) 

for K

^
β .  Then we can use either (8) or (9) to obtain K

^
α .  Using 






 KKK ,,

^^
βα  we can 

estimate all our finite K AMPM projection quantities where T
nAA =

^
λ  and :d is assessed 

as 
 

    ∑
∈

=
obsi

id d
m

** 1π      

 (11) 
 
 In (11), *

id  will often be based largely on engineering judgement.  The value of 

*
id  should reflect several considerations: (1) how certain we are that the problem has 

been correctly identified; (2) the nature of the fix, e.g., its complexity; (3) past FEF 
experience and (4) any germane testing (including assembly level testing). 
 
 In practice, we do not know the value of K.  We could try to develop an mle for K 

based on (7) or by directly maximizing Z.  We have found that a solution 





 ^^^

,, Kβα  to 

the maximum likelihood equations (5), (6) and (7) can be a saddle point of ( )tmL , .  This 
can occur even for a large data set that appears to fit the model well.  We present graphs 
in Section 4.4.6 for such a data set that clearly illustrate the difficulty in obtaining a 
reasonable estimate for K.  Thus we prefer to take the point of view that we should not 
attempt to assess K.  However, by conducting a standard failure modes and effects 
criticality analysis (FMECA), we can place a lower bound on K, say lK .  Our experience 
with the AMPM is that if K is substantially higher than m , say, e.g., mK 10≥ , then our 
AMPM projection quantities will be insensitive to the value of K.  We believe for a 
complex system or subsystem it will often be the case that mK 10≥l  or at least the 
unknown value of K will be m10  or higher.  The factor of 10 may be larger than 
necessary.  In practice, we suggest exercising the AMPM model with several plausible 
lower bound values for K and comparing the associated projections with those obtained 
in the limit as ∞→K .  This is illustrated for a data set in Section 4.4.6. 
 
 We shall now consider the behavior of our AMPM estimators as ∞→K .  To do 

so, let 
mK

K
>

^
β  be a sequence satisfying (10) with limit [ )∞∈∞ ,0

^
β .  We shall assume 

that such a sequence exists for our data set ( )tm,  generated over [ ]T,0 .  Then by (10) we 
have 
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 Recall by Annex 2,  ( )1, += αβλ KKB , where we previously suppressed the 

subscript K.  Thus we shall define KB,

^
λ  by 
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By (8) we obtain 
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Taking the limit in (14) as ∞→K  we arrive at 
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provided 0
^

>∞β .  If 0
^

=∞β , then we can show, by applying L’Hospital’s rule, that the 
limit of the right hand side of (10) goes to a finite positive number as ∞→K .  This 

contradiction establishes that 0
^

>∞β .  Since ( )1,01 ,

^^^
∈→






 + ∞BKKK λαβ  as ∞→K  

and ( )∞∈∞ ,0
^
β , we obtain 
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∞ KK
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 (16) 
 
 We can now obtain our limiting AMPM estimates as ∞→K .  We first 

numerically solve (12) for ∞

^
β  and then obtain ∞,

^

Bλ  from (15).  From (16), the value of 
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∞

^
α  is –1.  To go from the finite K AMPM estimate to the associated limiting estimate, 
we first consider ( )thK  given by (3) in Annex 2, where we have suppressed the subscript 
K.  Motivated by (3), we define 
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Then 
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From (2) in Annex 2, we define 
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We can obtain ( )t∞

^
µ  more readily from (18) than from (19).   
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From (20), we can see that Equation (15) simply says 
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^
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 (21) 
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In accordance with (5) in Annex 2, we define 
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Finally, from (4) in Annex 2, we define 
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From (24) we have 
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Recall in Section 4.4.4 we showed our finite K AMPM converged to a NHPP in the sense 
that the process ( ){ }∞<≤ ttX K 0,  converged to the NHPP ( ){ }∞<≤∞ ttX 0,  as ∞→K .  
We also noted that ( ){ }∞<≤∞ ttX 0,  has the mean value function ( )t∞µ  given in (4.4.4).  
We could directly derive parameter estimators for this NHPP.  By so doing, one can show 
that these estimators are identical to the limiting AMPM estimators. 
 
 


